已知数列{an}的前n项和为Sn,且满足Sn=2n?1(n∈N*).(1)求数列{an}的通项公式;(2)设hn=Sn?an,且

已知数列{an}的前n项和为Sn,且满足Sn=2n?1(n∈N*).(1)求数列{an}的通项公式;(2)设hn=Sn?an,且数列{hn}的前n项和为Tn,求van-Tn的最大值及此时n的值.

无其他回答

已知数列{an}的前n项和为Sn,且满足Sn=2n?1(n∈N*).(1)求数列{an}的通...
(1)当n=1时,a1=S1=1,…(9分)当n>1时,an=Sn?Sn?1=(9n?1)?(9n?1?1)=9n?9n?1=9n?1,∵a1=1适合上式,∴{an}的通项公式是an=9n?1.…(6分)(9)bn=(9n?1)9n?1=99n?1?9n?1,…(地分)∴Tn=(91+9个+95+…+99n?1)?(90+91+99+…+9n?1)=9...

已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N*).(Ⅰ)求数列{an}的...
1=2an?1?1,(n≥2,n∈N*)…(3分)两式相减得an=2an-1,…(5分)∴{an}是首项为1,公比为2的等比数列,…(6分)∴an=2n?1.…(7分)(Ⅱ)解:∵bn=an-n,an=2n?1,bn=2n?1?n…(8分)Tn=b1+b2+…+bn =(20?1)+(21?2)+…+(2n?1?n)=(20+21+...

...且Sn=2an-2(n∈N*).(1)求数列{an}的通项公式;(2)令bn=n?an+log...
2n-n,∴Tn=b1+b2+…+bn=(2+2?22+3?23+…+n?2n)-(1+2+…+n),令Rn=2+2?22+3?23+…+n?2n,则2Rn=22+2?23+3?24+…+n?2n+1,两式相减得-Rn=2+22+23+…+2n-n?2n+1=2(1?2n)1?2?n?2n+1,∴Rn=(n?1)2n+1+2,故Tn=b1+b2+…+bn=(n-1)2n+1...

已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N+ ).(1)求数列{an}的...
(1)由已知Sn=2an-1当n=1时,a1=S1=2a1-1,得a1=1;当n≥2时,an=Sn-Sn-1=(2an-1)-(2an-1-1),所以an=2an-1,所以数列{an}是首项为1,公比为2的等比数列,所以an=2n-1(n∈N+ ).(2)bn=an+1(an+1)(an+1+1)=2(12n+1+1?12n+1),∴Tn=2[(12?13...

...且Sn=n2+n(1)求数列{an}的通项公式;(2)令bn=an2n(n∈N*),求数列{...
(1)当n=1时,a1=S1=2…(2分)当n≥2时,an=Sn-Sn-1=(n2+n)-[(n-1)2-(n-1)]=2n,n=1时,也适合上式.∴an=2n.…(6分)(2)由已知:bn=2n?2n=n?2n+1,∵Tn=1?22+2?23+3?24+…+n?2n+1,①∴2Tn=1?23+2?24+…+(n-1)?2n+1+n?2n+2,②...

已知数列{an}的前n项和为Sn,且Sn=n的二次方+2n(1)求{an}的通项公式(2...
因此,数列的通项公式为 $a_n = n+3$。2.首先,我们需要计算数列 {an} 的通项公式,这里我们可以使用与上题类似的方法:a_n = S_n - S_{n-1} = n^2 + 2n - (n-1)^2 - 2(n-1) = 2n - 1an=Sn−Sn−1=n2+2n−(n−1)2−2(n−...

设数列{an}的前n项和为Sn,且满足Sn+1=2an,n∈N*.(Ⅰ)求数列{an}的通项...
(Ⅰ)n=1时,s1+1=2a1,∴a1=1,…(2分)n≥2时,又sn-1+1=2an-1,相减得an=2an-1,∵{an}是以1为首项,2为公比的等比数列,故an=2n?1…(6分)(Ⅱ)由(Ⅰ)得an+1=2n,∴2n=2n-1+(n+1)dn,∴dn=2n?1n+1,∴1dn=n+12n?1…(8分)∴Tn=220+321+…+...

已知数列{an}的前n项和为Sn,a1=1,且Sn=2n+1-n-2,(n∈N*).(Ⅰ)求数列...
(I)∵sn=2n+1-n-2,当n≥2时,an=sn-sn-1=2n-1,当n=1时,a1=s1=1适合上式.∴an=2n-1.(II)由(I)得bn=(2n+1)an+2n+1=(2n+1)2n.所以Tn=3×2+5×22+7×23+…+(2n-1)2n-1+(2n+1)2n,①2Tn=3×22+5×23+7×24+…+(2n-1)2n+(2n+1)2n+1...

已知数列an的前n项和为Sn,且Sn=n(n+1)(n属于N*)求数列an的通项公式...
(1)Sn=n(n+1)n=1 , a1=2 an = Sn-S(n-1)= 2n (2)an=b1\/(3+1)+b2\/(3^2+1)+...+bn\/(3^n+1) (1)a(n-1)=b1\/(3+1)+b2\/(3^2+1)+...+b(n-1)\/(3^(n-1)+1) (2)(1)-(2)an - a(n-1) = bn\/(3^n+1)2n-2(n-1)= bn\/(3^n+1)b...

已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),(1)求数列{an}的通...
2n-1=2n+1,∴an=2n+1-2(2)证明bn=log2(an+2)=log22n+1=n+1.∴bnan+2=n+12n+1,则Tn=222+323 +…+n+12n+1,∴12Tn=223+324+…+n2n+1+n+12n+2④③-④,12Tn=222+123+124…+12n+1-n+12n+2=14+14(1-12n)1-12-n+12n+2=14+12-12n+1- n+12n+2=34-n+...

相似回答