已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*).(1)求数列{an}的通项公式;(2)令bn=n?an+log 12an,数列{bn}的前n项和为Tn,若不等式(n-1)(Sn+2)-Tn<t+1932n2 对任意n∈N*恒成立,求实数t的取值范围.
已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*).(1)求数列{an}的通项公...
(1)当n=1时,a1=2a1-2,解得a1=2;当n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2)=2an-2an-1,∴an=2an-1,故数列{an}是以a1=2为首项,2为公比的等比数列,故an=2?2n?1=2n.(2)由(1)得,bn=n?2n+log122n=n?2n-n,∴Tn=b1+b2+…+bn=(2+2?22+3?23+…...
已知数列{an}的前n项和为Sn,且Sn=2an-n(n∈N+).(1)求数列{an}的通项...
∵Sn=2an-n ①当n≥2时,Sn-1=2an-1-(n-1) ②②-①得an=2an-1+1,∴an+1=2(an-1+1)又∵a1=2a1-1,∴a1=1∴数列{an+1}是以2为首项,2为公比的等比数列,∴an+1=2n∴an=2n-1由于a1=1也适合上式,∴an=2n-1(n∈N+)(2)∵点P(bn,bn+1)在直线x-y+...
...n(n∈N*)(1)求数列{an}的通项公式;(2)若bn=(2n+1)an+
(1)∵Sn=2an-n,∴a1=1,∵Sn=2an-n,Sn-1=2an-1-(n-1),n≥2,n∈N+,两式相减,得an=2an-1+1,∴an+1=2(an-1+1),n≥2,n∈N+,∵a1+1=2,∴{an+1}是首项为2,公比为2的等比数列,∴an+1=2n,∴an=2n-1.(2)∵bn=(2n+1)an+2n+1,∴bn=(2n...
已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),(1)求数列{an}的通...
(1)当n∈N+时,Sn=2an-2n,则当n≥2,n∈N+时,Sn-1=2an-1-2(n-1) ①-②,an=2an-2an-1-2,an=2an-1+2∴an+2=2(an-1+2),∴an+2an-1+2=2,n=1时 S1=2a1-2,∴a1=2∴{an+2}是a1+2=4为首项2为公比的等比数列,∴an+2=4?2n-1=2n+1,∴...
...=2减An.(1)求数列{An}的通项公式;(2)记Bn=An+n,求数列{Bn}的...
2S(n)-2S(n-1)=A(n-1)-An 3An=A(n-1),即:[An]\/[A(n-1)]=1\/3=常数,则数列{An}是以A1=2\/3为首项、以q=1\/3为公比的等比数列,则:An=(2\/3)×(1\/3)^(n-1)=2×(1\/3)^n Bn=An+n=2×(1\/3)^n+n 求数列{Bn}的前n项和,可以采用分组求和,得:Tn=[...
...+n(1)求数列{an}的通项公式;(2)令bn=an2n(n∈N*),求数列{bn}_百度...
(1)当n=1时,a1=S1=2…(2分)当n≥2时,an=Sn-Sn-1=(n2+n)-[(n-1)2-(n-1)]=2n,n=1时,也适合上式.∴an=2n.…(6分)(2)由已知:bn=2n?2n=n?2n+1,∵Tn=1?22+2?23+3?24+…+n?2n+1,①∴2Tn=1?23+2?24+…+(n-1)?2n+1+n?2n+2,②…...
已知数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*),求数列{an}的通项...
由Sn=2an-n知当n=1时a1=2a1-1,a1=1当n>=2则an=Sn-S(n-1)=(2an-n)-2an(n-1)+(n-1)整理得an+1=2[a(n-1)+1]即数列{an+1}是首项为a1+1=2,公比为2得等比数列,所以an+1=2的n次方,an=2的n次方-1当n=1时a1=2-1=1也成立,即...多谢采纳...!
已知数列{an}的前n项和为Sn,且满足Sn-2an+n=0(n∈N*)(Ⅰ)求数列{an}...
(Ⅰ)由Sn-2an+n=0 ①得:Sn+1-2an+1+(n+1)=0 ②②-①得,an+1+1=2(an+1).又在Sn-2an+n=0中取n=1得,a1=1,∴{an+1}是以a1+1=2为首项,以2为公比的等比数列.∴an+1=2n,即an=2n?1;(Ⅱ)由(Ⅰ)知,bn=log2(an+1)+1=log2(2n?1+1)+1=n...
已知数列{an}得前n项和为,且满足Sn=2an-n(n∈N*),求数列{an}得通项公...
Sn=2An-n① S(n-1)=2A(n-1)-(n-1)② 相减得:An=2A(n-1)+1 ∴An+1=2(A(n-1)+1)∴{An+1}是等比数列,公比为2,首项可以求得为2 ∴An+1=2^n ∴An=2^n-1
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N*).(Ⅰ)求数列{an}的...
(Ⅰ)∵Sn=2an-1,令n=1,解得a1=1.(2分)∵Sn=2an-1,∴Sn?1=2an?1?1,(n≥2,n∈N*)…(3分)两式相减得an=2an-1,…(5分)∴{an}是首项为1,公比为2的等比数列,…(6分)∴an=2n?1.…(7分)(Ⅱ)解:∵bn=an-n,an=2n?1,bn=2n?1?n…(8分)...