已知数列{an}的前n项和是Sn,且Sn=2an-n(n∈N*).(1)证明:数列{an+1}是等比数列,并求数列{an}的通项公式;(2)记bn=an+1anan+1,求数列{bn}的前n项和.
已知数列{an}的前n项和是Sn,且Sn=2an-n(n∈N*)①证明:数列{an+1}是等...
取n=1,可知,S1=a1=2a1-1,知a1=1,即an+1=2*2^(n-1)=2^n,可知an=2^n-1 (2)由(1)知,a[n+1]-an=2^n,而 an+1=2^n,即有an+1=a[n+1]-an 故bn=(a[n+1]-an)\/(an×a[n-1])=1\/an - 1\/a[n+1]所以{bn}的前n项和,b1+b2+...+bn=1\/a1-1\/a2+1...
已知数列{an}的前n项和是Sn,且Sn=2an-n(n∈N*)①证明:数列{an+1}是等...
a_n-2a_(n-1)-1=0 a_n+1=2[a_(n-1)+1]所以a_n+1是等比数列公比为2 令n=1得a_1=2a_1-1 a_1=1 (2)a_n+1=(a_1+1)2^(n-1)=2^n ,a_n=2^n-1 b_n=(2^n)\/(2^n-1)*(2^(n+1)-1)=1\/2^n-1\/2^(n+1)=1\/2^(n+1)数列{bn}的前n项和T_n=[1...
已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).(1)证明:数列{an+...
解答:(1)证明:当n=1时,2a1=a1+1,∴a1=1.∵2an=Sn+n,n∈N*,∴2an-1=Sn-1+n-1,n≥2,两式相减得an=2an-1+1,n≥2,即an+1=2(an-1+1),n≥2,∴数列{an+1}为以2为首项,2为公比的等比数列,∴an+1=2n,∴an=2n-1,n∈N*;(2)解:bn=(2n+1)a...
已知数列{an}的前n项和为Sn,且Sn=2an+n-4 (1)求证:数列{an-1}为等比...
an=2an-2a(n-1)+1 (an-1)\/[a(n-1)-1]=2 所以数列{an-1}是以2为公比的等比数列 an=2^n+1 cn=anlog2(an-1)cn=n*2^n+n Tn=(n-1)*2^(n+1)+(n^2+n+4)\/2
已知数列{an}的前n项和为Sn,且Sn=2an-n(n∈N*)1.求证数列{an+1}是等比...
an+1=2a +2 s =2a -n-1 s -sn=a =2a -2an-1 a +1=2an+2 (an+1)\/(a +1)=(2a +2)\/(2an+2)=(a +1)\/(an+1)所以数列{an+1}是等比数列 设Bn=b1+b2+b3+...+bn=log2(a1+1)+log2(a2+1)+log2(a3+1)+...+log2(an+1)=log2[(a1+1)(a2+1)(a3+1).....
已知数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*)(Ⅰ)求a1,a2,a3的...
(I)∵Sn=2an-n,当n=1时,由S1=2a1-1,可得a1=1当n=2时,由S2=a1+a2=2a2-2,可得a2=3当n=3时,由S3=a1+a2+a3=2a3-3,可得a3=7证明:(II)∵Sn=2an-n∴Sn-1=2an-1-(n-1)两式相减可得,an=2an-1+1,a1+1=2∴an+1=2(an?1+1)所以{an+1}是以2为首项,...
已知数列{an}的前n项和为Sn,若Sn=2an+n. (1)求证:数列{an-1}为等比...
所以S(n-1)=2a(n-1)+n-1 an=Sn-S(n-1)=2an+n-(2a(n-1)+n-1)=2an-2a(n-1)+1 由上式得:an=2an-2a(n-1)+1,即an=2a(n-1)-1;两边同时减1,则an-1=2a(n-1)-2 于是an-1=2(a(n-1)-1),an-1\/(a(n-1)-1)=2 所以,数列{an-1}为...
已知数列{an}的前n项和为Sn,满足Sn=2an-2n+1.(1)证明:数列{an2n}是等 ...
解答:证明:(1)n=1时,a1=4;n≥2时,an=Sn-Sn-1,可得an=2an-1+2n,∴an2n-an?12n?1=1,∴数列{an2n}是首项为2,公差为1的等差数列,∴an2n=n+1,∴an=(n+1)?2n;(Ⅱ)bn=an4n=(n+1)?2-n,∴Tn=2?12+3?122+…+(n+1)?12n,∴12Tn=2?122+…+n?12...
已知数列{an}前n项和为Sn,且Sn=2an-n, (1)求证,数列{an+1}为等比数列...
⑴Sn=3\/2an-1,∴S(n-1)=3\/2A(n-1)-1,两式相减整理得:An\/A(n-1)=3,{an}是等比数列,公比为3,首项由Sn=3\/2an-1得,另n=1,S1=a1得:A1=2,∴An=2*3^(n-1)⑵B(n+1)-Bn=2*3^(n-1)∶Bn=(Bn-B(n-1))+(B(n-1)-B(n-2))+.+(B2-B1)+B1,这是迭代法...
已知数列{an}的前n项和为Sn,a1=1,且nan+1=2Sn(n∈N*).(I)证明数列{ann...
(Ⅰ)∵nan+1=2Sn,∴(n-1)an=2Sn-1(n≥2),两式相减得nan+1-(n-1)an=2an,∴nan+1=(n+1)an,即an+1n+1=ann(n≥2),由a1=1,可得a2=2,从而对任意 n∈N*,an+1n+1=ann,又a11=1≠0,即{ann}是首项公比均为1的数列,所以ann=1×1n-1=1,故数列{an}...