已知数列{an}的前n项和为Sn,且Sn=2an?2(n∈N*),(1)求a1,a2的值; (2)求数列{an}的通项an;(3)设cn=(3n+1)an,求数列{cn}的前n项和Tn.
已知数列{an}的前n项和为Sn,且Sn=2an?2(n∈N*),(1)求a1,a2的值; &...
(1)由S1=2a1-2=a1得a1=2,S2=2a2-2=a1+a2,a2=4,(2)∵Sn=2an-2,Sn-1=2an-1-2,Sn-Sn-1=an,n≥2,n∈N*,∴an=2an-2an-1,∵an≠0,∴anan?1=2,(n≥2,n∈N*).即数列{an}是等比数列.an=2?2n?1=22.(3)cn=(3n+1)an=(3n+1)2n.Tn=4×...
已知数列{an}的前n项和为Sn,且Sn=2an?2(n∈N*),数列{bn}中,b1=1,bn+...
(1)由Sn=2an?2(n∈N*),可得当n≥2时,Sn-1=2an-1-2两式相减可得:an=2an-2an-1∴an=2an-1∴anan?1=2(n≥2)∵n=1时,S1=2a1-2,∴a1=2∴数列{an}是以2为首项,2为公比的等比数列∴an=2n∵bn+1=bn2bn+1∴1bn+1?1bn=2∵b1=1,∴1b1=1∴数列{1bn}是以...
已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*).(1)求数列{an}的通项公...
(1)当n=1时,a1=2a1-2,解得a1=2;当n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2)=2an-2an-1,∴an=2an-1,故数列{an}是以a1=2为首项,2为公比的等比数列,故an=2?2n?1=2n.(2)由(1)得,bn=n?2n+log122n=n?2n-n,∴Tn=b1+b2+…+bn=(2+2?22+3?23+…+...
已知数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*)(Ⅰ)求a1,a2,a3的...
(I)∵Sn=2an-n,当n=1时,由S1=2a1-1,可得a1=1当n=2时,由S2=a1+a2=2a2-2,可得a2=3当n=3时,由S3=a1+a2+a3=2a3-3,可得a3=7证明:(II)∵Sn=2an-n∴Sn-1=2an-1-(n-1)两式相减可得,an=2an-1+1,a1+1=2∴an+1=2(an?1+1)所以{an+1}是以2为首项,...
已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).(1)证明:数列{an+...
解答:(1)证明:当n=1时,2a1=a1+1,∴a1=1.∵2an=Sn+n,n∈N*,∴2an-1=Sn-1+n-1,n≥2,两式相减得an=2an-1+1,n≥2,即an+1=2(an-1+1),n≥2,∴数列{an+1}为以2为首项,2为公比的等比数列,∴an+1=2n,∴an=2n-1,n∈N*;(2)解:bn=(2n+1)a...
已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),(1)求数列{an}的通...
(1)当n∈N+时,Sn=2an-2n,则当n≥2,n∈N+时,Sn-1=2an-1-2(n-1) ①-②,an=2an-2an-1-2,an=2an-1+2∴an+2=2(an-1+2),∴an+2an-1+2=2,n=1时 S1=2a1-2,∴a1=2∴{an+2}是a1+2=4为首项2为公比的等比数列,∴an+2=4?2n-1=2n+1,∴an...
已知数列{an}的前n项和为Sn,且Sn=2an-n(n∈N+).(1)求数列{an}的通项...
∵Sn=2an-n ①当n≥2时,Sn-1=2an-1-(n-1) ②②-①得an=2an-1+1,∴an+1=2(an-1+1)又∵a1=2a1-1,∴a1=1∴数列{an+1}是以2为首项,2为公比的等比数列,∴an+1=2n∴an=2n-1由于a1=1也适合上式,∴an=2n-1(n∈N+)(2)∵点P(bn,bn+1)在直线x-y+...
已知数列{an}的前n项和为Sn,且满足Sn=2an-n(n∈N*)(1)求数列{an}的通...
∵Sn=2an-n,∴a1=1,∵Sn=2an-n,Sn-1=2an-1-(n-1),n≥2,n∈N+,两式相减,得an=2an-1+1,∴an+1=2(an-1+1),n≥2,n∈N+,∵a1+1=2,∴{an+1}是首项为2,公比为2的等比数列,∴an+1=2n,∴an=2n-1.(2)∵bn=(2n+1)an+2n+1,∴bn=(2n+1)...
已知数列{an}的前n项和Sn=n2an(n≥2),a1=1试猜想此数列的通项公...
解:在数列{an}中,前n项和为Sn,且a1=1,Sn=n2an(n∈N*),∴s1=a1=1=2×11+1;s2=1+a2=4a2,∴a2=13,s2=43=2×22+1;s3=1+13+a3=9a3,∴a3=16,s3=32=2×33+1;s4=1+13+16+a4=16a4,∴a4=110,s4=85=2×44+1;…于是猜想:sn=2nn+1.∴猜想此数列的通项...
已知数列an的前n项和为sn且sn=2an
已知数列an的前n项和为sn,且sn = 2an。当n = 1时,s1 = 2,因此第一项a1 = 2。当n > 1时,sn = sn-1 + an,根据题设,sn = 2an,则有2an = sn-1 + an,从而得到an = sn-1。结合前面得到的sn = 2an,可以得到sn-1 = 2sn-2,以此类推,可以得到sn = 2n-1s1 = 2n...