设数列{an}的前n项和为Sn,且满足Sn+1=2an,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)在数列{an}的每两项之间都按照如下规则插入一些数后,构成新数列:an和an+1两项之间插入n个数,使这n+2个数构成等差数列,其公差记为dn,求数列{1dn}的前n项的和Tn.
设数列{an}的前n项和为Sn,且满足Sn+1=2an,n∈N*.(Ⅰ)求数列{an}的通项...
(Ⅰ)n=1时,s1+1=2a1,∴a1=1,…(2分)n≥2时,又sn-1+1=2an-1,相减得an=2an-1,∵{an}是以1为首项,2为公比的等比数列,故an=2n?1…(6分)(Ⅱ)由(Ⅰ)得an+1=2n,∴2n=2n-1+(n+1)dn,∴dn=2n?1n+1,∴1dn=n+12n?1…(8分)∴Tn=220+321+…+...
设数列{an}的前n项和为Sn,且满足Sn+1=2an,n∈N*.(1)求数列{an}的通项...
S[n]+1=2a[n](2)两式相减得:a[n+1]=2a[n+1]-2a[n],化简得a[n+1]=2a[n](3);由(2)得a1+1=2a1,得a1=1(4),所以由(3)(4)解得 a[n]=2^(n-1)
设数列{an}的前n项和为Sn,且满足Sn=2-an,n=1,2,3,….(1)求数列{an}的...
(1)因为n=1时,a1+S1=a1+a1=2,所以a1=1.因为Sn=2-an,即an+Sn=2,所以an+1+Sn+1=2.两式相减:an+1-an+Sn+1-Sn=0,即an+1-an+an+1=0,故有2an+1=an.因为an≠0,所以an+1an=12( n∈N*).所以数列{an}是首项a1=1,公比为12的等比数列,an=(12)n?1( n∈...
设等比数列{an}的前n项和为Sn,且an+1=2Sn+2(n∈N*).(1)求数列{an}的...
(1分)两式相减可得an+1-an=2an…(2分)∴an+1an=3…(3分)在an+1=2Sn+2中令n=1,得a1=2…(5分)由等比数列的通项公式可得:an=2?3n?1…(6分)(2)证明:dn=2×3n?2×3n?1n+1=4×3n?1n+1…(7分)An=(2×3n+2×3n?1)(n+2)2=4(n+2)×3n?1…(8分...
已知数列{an}的前n项和为Sn,且满足an+Sn=2.(1)求数列{an}的通项公式...
(1)当n=1时,a1+S1=2a1=2,则a1=1. 又an+Sn=2,∴an+1+Sn+1=2,两式相减得an+1=12an,∴{an}是首项为1,公比为12的等比数列,∴an=12n?1(4分)(2)反证法:假设存在三项按原来顺序成等差数列,记为ap+1,aq+1,ar+1(p<q<r)则2?12q=12p+12r,∴2?2r-q=2...
设数列{an}的前n项和为Sn,且满足2an-Sn=1,n∈N*.(1)求数列{an}的通项...
(1)n≥2时,由2an-Sn=1,得2an-1-Sn-1=1.两式相减可得:an=2an-1 (n≥2),又由2an-Sn=1得a1=1≠0,∴数列{an}是公比为2的等比数列,∴an=2n-1;(2)(i)由(1)知an=2n-1,an+1=2n,∵an+1=an+(n+1)dn,∴dn=an+1?ann+1=2n?1n+1.(ii)由题意可...
已知数列{an}的前n项和为Sn,且满足Sn=2n?1(n∈N*).(1)求数列{an}的通...
Sn?1=(9n?1)?(9n?1?1)=9n?9n?1=9n?1,∵a1=1适合上式,∴{an}的通项公式是an=9n?1.…(6分)(9)bn=(9n?1)9n?1=99n?1?9n?1,…(地分)∴Tn=(91+9个+95+…+99n?1)?(90+91+99+…+9n?1)=9(1?4n)1?4?1?9n1?9=9?4n?9个?9n+1=9个?4n?9n+1...
数列{an}的前n项和为Sn,且a1=a,Sn+1=2Sn+n+1,n∈N*(1)求数列{an}的通...
(1)当n≥2时,由Sn+1=2Sn+n+1,n∈N*可得Sn=2Sn-1+n.∴an+1=2an+1.∴an+1+1=2(an+1),∴当n≥2且a≠-3时,数列{an+1}是从第2项开始的等比数列.a2=a+2.∴an+1=(a+3)?2n?2,∴an=(a+3)?2n?2?1.而a1=a不满足上式.当a=-3时,a1=-3;当n≥2时,...
...1=2Sn+n+1(n∈N*),(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn=n
(Ⅰ)∵Sn+1=2Sn+n+1(n∈N*)当n≥2时,Sn=2Sn-1+n,两式相减得,an+1=2an+1,两边加上1得出an+1+1=2(an+1),又S2=2S1+1,a1=S1=1,∴a2=3,a2+1=2(a1+1)所以数列{an+1}是公比为2的等比数列,首项a1+1=2,数列{an+1}的通项公式为an+1=2?2n-1=2n,∴an=...
已知数列{an}的前n项和为Sn,且满足Sn十n=2an(n∈N*)
Sn十n=2an S(n-1)+(n-1)=2a(n-1)两式相减得an +1=2an-2a(n-1)即an -1=2a(n-1)两边同时加上2得an +1=2[a(n-1)+1]又a1 +1=2≠0 所以an +1≠0 所以(an +1)\/[a(n-1)+1]=2 所以{an十1}是以2为首项,2为公比的等比数列 an +1=2×2^(n-1)=2^n an=2...