设数列{an}的前n项和为Sn,且满足Sn=2-an,n∈N+,数列{bn}满足b1=1,且bn+1=bn+an(1)求数列{an}和{bn}

设数列{an}的前n项和为Sn,且满足Sn=2-an,n∈N+,数列{bn}满足b1=1,且bn+1=bn+an(1)求数列{an}和{bn}的通项公式;(2)设cn=n(3-bn),数列cn=n(3-bn)的前n项和为Tn,求证:Tn<8;(3)设数列{dn}满足dn=4n+(-1)n-1?λ?1an(n∈N+),若数列{dn}是递增数列,求实数λ的取值范围.

无其他回答

设数列{an}的前n项和为Sn,且满足Sn=2-an,n∈N+,数列{bn}满足b1=1,且b...
由sn=2-an及s1=a1得a1=2-a1 所以a1=1 所以数列{an}是以1\/2为公比,1为首项的等比数列 所以an=(1\/2)^(n-1)当n=1时适合an=(1\/2)^(n-1)所以数列{an}的通项是an=(1\/2)^(n-1)由b(n+1)=bn+an得 b(n+1)-bn=(1\/2)^(n-1)于是有 b2-b1=1 b3-b2=1\/2 b4-b3=(...

已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N*),数列{bn}满足b1=1...
(1)令n=1,得a1=S1=2a1-1,解得a1=1,当n≥2时,an=Sn-Sn-1=2(an-an-1),整理,得an=2an-1,∴an=2n?1.∵数列{bn}满足b1=1,nbn+1=(n+1)bn,∴bn+1n+1=bnn,∴{bnn}是首项为1的常数列,∴bnn=1,∴bn=n.(2)∵数列{bn}的前n项和为Qn,∴Qn=1+2+3...

...前n项和为sn,且sn=2an-1,数列{bn}满足b1=2,bn+1=an+bn求an,b_百 ...
同样,sn=2an-1,sn-1=2a(n-1)-1 两式做差 所以an=2an-1 an=2^(n-1)所以b(n+1)=bn+2^(n-1)b(n+1)-bn=2^(n)-1 用累加法 bn+1=2^(n)-1+b1 所以bn=2^(n)+1

设数列{an}的前n项和为Sn,且Sn=2n-1.数列{bn}满足b1=2,bn...
解答:解:(1)当n=1时,a1=s1=21-1=1;当n≥2时,an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-1,a1=1适合通项公式an=2n-1,∴an=2n-1(n∈N*);(2)∵bn+1-2bn=8an,∴bn+1-2bn=2n+2,∴ bn+1 2n+1 - bn 2n =2,又 b1 21 =1,∴{ bn 2n }是首项为1,公差为2的等...

设数列{an}的前n项和为Sn,且满足Sn=2-an,n=1,2,3,….(1)求数列{an}的...
(1)因为n=1时,a1+S1=a1+a1=2,所以a1=1.因为Sn=2-an,即an+Sn=2,所以an+1+Sn+1=2.两式相减:an+1-an+Sn+1-Sn=0,即an+1-an+an+1=0,故有2an+1=an.因为an≠0,所以an+1an=12( n∈N*).所以数列{an}是首项a1=1,公比为12的等比数列,an=(12)n?1( n...

...正的数列{an}的前n项和为Sn,且满足:2Sn=an?(an+1);数列{bn}满足:bn...
(an-1+1),两式相减,整理得(an+an-1)(an-an-1-1)=0,∵an>0,∴an-an-1=1,∴数列{an}是以a1=1为首项,1为公差的等差数列,∴an=n;∵bn-bn-1=an-1(n≥2,n∈N*),∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1=n(n?1)2+1=n2?n+22n=1时也...

数列{an}的前n项和记为Sn,且满足Sn=2an-1.(1)求数列{an}的通项公式...
(1)由Sn=2an-1得Sn+1=2an+1-1,相减得an+1=2an+1-2an,即an+1=2an.又S1=2a1-1,得a1=1≠0,∴数列{an}是以1为首项2为公比的等比数列,∴an=2n-1.…(5分)(2)由(1)知Sn=2n-1,∴S1?C0n+S2?C1n+S3?C2n+…+Sn+1?Cnn=(21-1)?C0n+(22-1)?C1n...

设数列{an}的前n项和为Sn,且Sn=2n?1.数列{bn}满足b1=2,bn+1-2bn=8a...
1.所以 an=2n?1(n∈N*). …(5分)(Ⅱ)证明:因为 bn+1-2bn=8an,所以 bn+1?2bn=2n+2,即bn+12n+1?bn2n=2.所以{bn2n}是首项为b121=1,公差为2的等差数列.所以bn2n=1+2(n?1)=2n?1,所以bn=(2n?1)?2n. …(9分)(Ⅲ)解:存在常数λ使得不等式(?

数列{an}的前n项和为Sn,满足Sn=n2+2n.等比数列{bn}满足:b1=...
解答:(1)证明:∵数列{an}的前n项和为Sn,满足Sn=n2+2n,∴n=1时,a1=S1=1+2=3,…(2分)n≥2且n∈N*时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1 经检验a1亦满足an=2n+1,∴an=2n+1(n∈N*)…(5分)∴an+1-an=[2(n+1)+1]-(2n+1)=2为常数 ∴{an}...

已知数列{an}的前n项和为Sn,且满足Sn=2an-2n(n∈N*)?(I)设bn=an+2...
(3分)又∵a1=2,可知an>0,∴当n≥2时,bnbn?1=an+2an?1+2=2an?1+4an?1+2=2(常数),∴{bn}是以b1=a1+2=4为首项,2为公比的等比数列,∴数列{bn}的通项公式bn=2n+1.…(6分)(Ⅱ)∵cn=log2bn=log22n+1=n+1,∴cnbn=n+12n+1,…(8分)则Tn=222+323+...

相似回答