计算 1+1/(1+2)+1/(1+2+3)+...+1/(1+2+3+...+10) 带详细过程
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+...+1\/1+2+3+...+10怎么算
=1+2(1\/2 - 1\/11)=1+9\/11=20\/11
1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+4+…+50)=小学解法
所以,1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+4+…+50)= 2×(1 - 1\/2) + 2×(1\/2 - 1\/3) + 2×(1\/3 - 1\/4) + 2×(1\/4 - 1\/5) + …… + 2×(1\/50 - 1\/51)= 2×(1 - 1\/2 + 1\/2 - 1\/3 + 1\/3 - 1\/4 + 1\/4 - 1\/5 + …… +...
1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...10)=
你应该知道1+2+3+……+50,这种题怎么算吧,公式:(第一项+最后一项)*项数\/2 因此1+2+3+……+50=(1+50)*50\/2 那么1\/(1+2+3+...+50)=1\/【(1+50)*50\/2】,简化为,1\/(1+2+3+...+50)=2*1\/(51*50)1\/(1+2+3+...+50)=2*(1\/50-1\/51),同理 1\/(1...
1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…100)=
1+2=2*3\/2 1+2+3=3*4\/2 1+2+3+4=4*5\/2 1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5...
1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=? 急急急~
根据求和公式:1+2+3+...+n=n(n+1)\/2 所以1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 ...
1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...+2010)=
第n个分数的分母,为:1+2+。。。+n=n(n+1)\/2 那么第n个分数就是2\/[n*(n+1)]1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...+2010)=2\/(1*2)+2\/(2*3)+...+2\/(2010*2011)=2*(1-1\/2)+2*(1\/2-1\/3)+...+2*(1\/2010-1\/2011)=2*(1-1\/2+1\/2-1\/3*1...
1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...1\/(1+2+3+...99+100)
1\/(1 + 2 + 3 + ... + n)= 1\/[n(n + 1)\/2]= 2\/[n(n + 1)]= 2[1\/n - 1\/(n + 1)]那么有:1\/1 + 1\/(1 + 2) + 1\/(1 + 2 + 3) + ... + 1\/(1 + 2 + 3 + ... + 100)= 1 + 2\/(2*3) + 2\/(3*4) + ... + 2\/(100*101)= 1 + 2...
1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+…+1\/(1+2+3+…+100) 简便计算方法...
简便计算方法:1+2+3+...+n=n(n+1)\/21\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 它的原理是...
计算巧算1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……1\/(1+2+3+……+100...
1+2+3+4=4*5\/2 1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5)+……+1\/(100*101)〕因为:...
c语言编写。计算1+1\/(1+2)+1\/(1+2+3)+...+1\/( 1+2+3+...
i,j,sum=0;printf("请你输入n的值:");scanf("%d",&n);\/\/由键盘输入n的值 for(i=n;i>0;i--)\/\/控制数列项数 { for(j=1;j<=n-i+1;j++)\/\/控制每一个项包含的数字的数量 sum+=j;\/\/计算前n项的和 } printf("1+1\/(1+2)+...+(1+2+...+%d))=%d",n,sum);} ...