x^2/1+x^2的不定积分怎么求

如题所述

设 x=tant,dx=(sect)^2dt

t=arctanx,1+x^2=(sect)^2,cost=1/√(1+x^2)

sint=x/√(1+x^2)

sin2t=2sintcost=2x/(1+x^2)

原式=∫(tant)^2(sect)^2dt/*(sect)^4

=∫(sint)^2*(cost)^2dt/(cost)^2

=∫(sint)^2dt

=(1/2)∫(1-cos2t)dt

=t/2-(1/4)sin2t+C

=(1/2)arctanx-x/[2(1+x^2)]+C

扩展资料:

把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

温馨提示:内容为网友见解,仅供参考
第1个回答  2020-12-25

x^2/1+x^2的不定积分是(1/2)arctanx-x/[2(1+x^2)]+C。

设 x=tant,baidx=(sect)^du2dt

t=arctanx,1+x^2=(sect)^2,cost=1/√(1+x^2)

sint=x/√(1+x^2)

sin2t=2sintcost=2x/(1+x^2)

原式=∫(tant)^2(sect)^2dt/*(sect)^4

=∫(sint)^2*(cost)^2dt/(cost)^2

=∫(zhisint)^2dt

=(1/2)∫(1-cos2t)dt

=t/2-(1/4)sin2t+C

=(1/2)arctanx-x/[2(1+x^2)]+C

所以x^2/1+x^2的不定积分是(1/2)arctanx-x/[2(1+x^2)]+C。

扩展资料:

1、分部积分法的形式

(1)通过对u(x)求微分后,du=u'dx中的u'比u更加简洁。

例:∫xarctanxdx=∫arctanxd(1/2x^2)

=1/2x^2*arctanx-1/2∫x^2darctanx=1/2x^2*arctanx-1/2∫x^2/(1+x^2)dx

2、不定积分公式

∫cosxdx=sinx+C、∫sinxdx=-cosx+C、∫e^xdx=e^x+C。



本回答被网友采纳
第2个回答  2016-11-15
∫x^2/(1+x^2)dx
=∫1-1/(1+x^2)dx
=x-arctanx+C追问

∫(cos√t)/√tdt求不定积分

追答

本回答被提问者采纳
相似回答