为什么连续不一定可导?

如题所述

因为如果这个函数前提是连续的设f(x)=|x|这个函数连续,到时在x=0的时候f(x)不可导,这就是连续不一定可导。

连续的定义:

1、点函数值等于该点极限。

2、该点有定义。

3、函数有极限。

可导要满足:

1、导数存在。

2、左右导数相等。

比如说:y= |x|这个函数就不满足上述所说的可导性,因为在x = 0时是不可导的,左右导数不相等。

连续与可导的关系

1、连续的函数不一定可导;

2、可导的函数是连续的函数;

3、越是高阶可导函数曲线越是光滑;

4、存在处处连续但处处不可导的函数。

左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次。

温馨提示:内容为网友见解,仅供参考
第1个回答  2022-01-08

对于一元函数有,可微<=>可导=>连续=>可积。

对于多元函数,不存在可导的概念,只有偏导数存在。函数在某处可微等价于在该处沿所有方向的方向导数存在,仅仅保证偏导数存在不一定可微,因此有:可微=>偏导数存在=>连续=>可积。

可导与连续的关系:可导必连续,连续不一定可导。

常用导数公式:

1、y=c(c为常数) y'=0

2、y=x^n y'=nx^(n-1)

3、y=a^x y'=a^xlna,y=e^x y'=e^x

4、y=logax y'=logae/x,y=lnx y'=1/x

5、y=sinx y'=cosx

6、y=cosx y'=-sinx

7、y=tanx y'=1/cos^2x

8、y=cotx y'=-1/sin^2x

9、y=arcsinx y'=1/√1-x^2

本回答被网友采纳
第2个回答  2023-07-21

因为如果这个函数前提是连续的设f(x)=|x|这个函数连续,到时在x=0的时候f(x)不可导,这就是连续不一定可导。

连续的定义:

1、点函数值等于该点极限。

2、该点有定义。

3、函数有极限。

可导要满足:

1、导数存在。

2、左右导数相等。

比如说:y= |x|这个函数就不满足上述所说的可导性,因为在x = 0时是不可导的,左右导数不相等。



连续与可导的关系

1、连续的函数不一定可导;

2、可导的函数是连续的函数;

3、越是高阶可导函数曲线越是光滑;

4、存在处处连续但处处不可导的函数。

左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次。

第3个回答  2023-07-17
连续性和可导性是两个不同的概念,其之间没有必然的关系。虽然连续性是可导性的一个必要条件,但连续函数未必都是可导的。

连续性是指函数在某一点附近没有跳变或间断,即函数图像可以被一条无间断的曲线表示。它要求函数在该点的左右极限存在且相等。

可导性则是指函数在某一点附近存在切线(导数),即函数在该点的左右导数存在且相等。可导性意味着函数在任意小的邻域内可以用线性近似来近似函数的局部变化。

尽管连续性是可导性的一个必要条件,但可导性还需要更严格的条件。例如,函数在某一点处可能是连续的,但由于存在尖点、锐角、断点等异常形状,导数可能不存在。例如,阶梯函数在每个跳跃点都是连续的,但它在跳跃点处不可导。

因此,连续性是可导性的一个较弱要求,只要求函数在某点处无间断,而可导性则要求函数在该点处具有平滑的变化并存在切线。
第4个回答  2023-07-15
在数学中,连续性和可导性是两个不同的概念。

连续性是指函数在某个区间上的取值变化连续,即在函数的定义域内没有跳跃或断裂。如果函数在某个点的左右极限存在,并且与该点处的函数值相等,那么该函数在该点是连续的。连续性是一个比较宽泛的概念,大多数函数都是连续的。

可导性是指函数在某个点的导数存在。导数是用来描述函数在某一点上的瞬时变化率,它表示函数在该点的切线斜率。如果一个函数在某个点处的导数存在,那么该函数在该点是可导的。

然而,连续性和可导性之间并不一定具有等价关系。即使函数在某个点是连续的,也不意味着在该点处一定存在导数。例如,考虑函数f(x) = |x|,其中x为实数。这个函数在x=0处是连续的,但在该点的导数不存在,因为不同的左右极限具有不同的斜率,即在该点无法定义唯一的切线。

此外,还存在其他一些函数形式,如阶梯函数和绝对值函数在某些点处可能存在连续性但不可导。因此,连续性和可导性是两个相对独立的概念,在某些情况下可以同时成立,但不一定总是互相包含。

连续函数为什么不一定可导?
它是连续的对其求导,当X大于等于0时,它的导数是一 则X大于等于0上的每一点的斜率都应该为一 但在X等于0这一点,它的斜率为0 (不为一),所以连续的不一定可导。1、函数可导的充要条件:函数在该点连续且左导数、右导数都存在并相等。2、函数可导与连续的关系:定理:若函数f(x)在x1处可导...

可导一定是连续的吗?为什么?
可导一定连续,连续不一定可导。连续是可导的必要条件,但不是充分条件,由可导可推出连续,由连续不可以推出可导。可以说:因为可导,所以连续。不能说:因为连续,所以可导。可导必连续证明如下图 连续不一定可导。函数可导,导函数不一定连续。如y=³√x是在R上连续的,导函数为y'=1\/(...

可导一定连续,连续不一定可导,这句话对吗,为什么?
例如绝对值函数就是连续的,但不可导,可导数一定连续是因为,定义里面就用到了连续的条件。

函数连续,但不可导,为什么?
1、连续的函数不一定可导;2、可导的函数是连续的函数;3、越是高阶可导函数曲线越是光滑;4、存在处处连续但处处不可导的函数。左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次。

为什么函数在一点连续,但不可导呢?
1、左右导数存在且相等是可导的充分必要条件。2、可导必定连续。3、连续不一定可导。所以,左右导数存在且相等就能保证该点是连续的。仅有左右导数存在且该点连续不能保证可导:例如y=|x|在x=0点。因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。由极限的性质...

连续的函数为什么不一定可导?
连续与可导的关系:1. 连续的函数不一定可导;2. 可导的函数是连续的函数;3.越是高阶可导函数曲线越是光滑;4.存在处处连续但处处不可导的函数。左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导...

为什么可导可以推出连续但连续推不出可导?
可导和连续是微积分中非常重要的两个概念。它们之间有着密切的联系,但并不等价。可导可以推出连续,但连续并不一定能推出可导。首先,我们来理解一下这两个概念的定义。连续是指在某一点的极限值等于函数值,也就是说,当自变量趋近于某一点时,函数值也会趋近于该点处的函数值。这是一个关于极限的...

为什么连续的函数不一定可导?
但在X等于0这一点,它的斜率为0 (不为一) 所以连续的不一定可导。注意 可导与连续的关系:可导必连续,连续不一定可导。可微与连续的关系:可微与可导是一样的。可积与连续的关系:可积不一定连续,连续必定可积。可导与可积的关系:可导一般可积,可积推不出一定可导。

函数连续,为什么不可导?
1、连续的函数不一定可导。2、可导的函数是连续的函数。3、越是高阶可导函数曲线越是光滑。4、存在处处连续但处处不可导的函数。左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次...

函数f(x)在点x0处连续,为什么不一定可导?
导数不存在的一种情况是函数在该点存在垂直于x轴的切线,也就是说,左右导数不相等。而左右导数不相等可能是因为函数在该点存在尖点、角点或断点等特殊情况。因此,连续性只是可导性的一个必要条件,但不是充分条件。也就是说,函数在某个点处连续并不能保证它在该点处可导。

相似回答
大家正在搜