用配方法解关于x的方程x2+px+q=0时,此方程可变形为( )A.(x+p2)2=p24B.(x+p2)2=p2?4q4C.(x?p2)2=p2+4q4D.(x?p2)2=4q?p24
用配方法解关于x的方程x2+px+q=0时,此方程可变形为( )A.(x+p2)2=p2...
∵x2+px+q=0∴x2+px=-q∴x2+px+p24=-q+p24∴(x+p2)2=p2?4q4故选B.
求数学题答案
第一步:先在X^2+2X后加一项常数项,使之能成为一项完全平方式,那么根据题目,我们可以得知应该加一个1这样就变成了(X+1)^2。 第二步:原式是X^2+2X-3,而(X+1)^2=X^2+2X+1,两个葵花子对比之后发现要在常数项后面减去4,才会等于原式,所以最后用配方法后得到的式子为(X+1)^2-4=0,最后可解方程。
一元二次方程详细的解法,越相信越好。
∴x= ∴原方程的解为x1=,x2= (2)解: 9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x...
一元二次方程
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了. 解(x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 =2(x-y) ^2-3(x-y)-2 =[(x-y)-2][...
一元一次方程题目
2、 方程(x+1)2-2(x-1)2=6x-5的一般形式是 。 3、 关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为 。 4、 已知二次三项式x2+2mx+4-m2是一个完全平方式,则m= 。 5、 已知 +(b-1)2=0,当k为 时,方程kx2+ax+b=0有两个不等的实数根。 6、 关于x的方程mx2-2x+1=0只...
求人教版二次根式,一元二次方程,旋转教案
1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=m± . 例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以 此方程...
...时候,方程式化简总好搞不好,都有哪些技巧和方法?总结下!高中和初中...
(a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2 方程左边成为一个完全平方式:(x+ )2= 当b2-4ac≥0时,x+ =± ∴x=(这就是求根公式) 例2.用配方法解方程 3x2-4x-2=0 解:将常数项移到方程右边 3x...
一元二次方程的求解
1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=m± . 例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可...
一元二次方程方计算方法
∴原方程的解为x1=,x2=(2)解:9x²-24x+16=11∴(3x-4)²=11∴3x-4=±11∴x=(±11+4)÷3∴原方程的解为x1=x2=2.配方法:用配方法解方程ax²+bx+c=0(a≠0)先将常数c移到方程右边:ax²+bx=-c将二次项系数化为1:x²+x=-方程两边分别加上一次项系数的一半的平方:x²+x+()...
1道关于一元二次方程的题目
第一步:先在X^2+2X后加一项常数项,使之能成为一项完全平方式,那么根据题目,我们可以得知应该加一个1这样就变成了(X+1)^2。 第二步:原式是X^2+2X-3,而(X+1)^2=X^2+2X+1,两个葵花子对比之后发现要在常数项后面减去4,才会等于原式,所以最后用配方法后得到的式子为(X+1)^2-4=0,最后可解方程...