自然对数底e的来源

如题所述

e的全称是自然对数的底,不是自然对数,自然对数是ln。

自然对数的底e,一般认为是欧拉(Leonhard Euler,1707-1783,瑞士)在研究微积分的时候发现的。e=lim(1+1/x)^x,当x趋近于正无穷时的极值。在计算中,一般取 e=1+1/(1!)+1/(2!)+1/(3!)....,越多项越准确。

与上次提到的圆周率相比,e对于人类的重要性并不像π那样显而易见。但是e又是无处不在的。

-----------分割线-----------

古人对e的认识

公元前1700年左右,古巴比伦人就曾提出一个问题:

如果以20%的年利息贷款给别人,那么一年后你有多少钱?

这道题无非是一个简单的公式:1x(1+0.2)^1=1.2

如果每半年复利一次,则第一年的本利和为1x(1+0.2/2)^2=1.21

如果每季度复利一次,则为1x(1+0.2/4)^4=1.21550625

如果每月复利一次,则为1.2193910849

每天复利一次,则为1.221335858

如果每时、每分、每秒复利,第一年的本利和分别为1.2213999696、1.2214027117、1.2214027574。

从上面的计算可以看出,年率一定,分期复利,期数增加,本利和缓慢增大;但无论期数怎么增加,本利和并不会无限制地增大,而是有一个“封顶”,永远超过不了。这个封顶就是时时刻刻都在复利时第一年的本利和,用数学语言来将就是期数趋向无穷大时第一年本利和的极限。稍懂点微积分就能算出这个极限等于

e^0.2=1.2214027581

巴比伦人不知道这个连续复利的问题,很显然,在古代讨论这么大的小数是令人痛苦的。

-----------分割线-----------

伯努利家族对e的贡献

在1683年,瑞士著名数学家雅各·伯努利(Jacob Bernoulli, 1654~1705)在研究连续复利时,才意识到问题须以极限方式来解决。但是他只提出了一个式子,觉得这个数应该在2和3之间,并未得到完整的数据。因为那时候,还没有极限的概念。

顺便说一句,伯努利家族3代人出了8位天才科学家。这位雅各·伯努利醉心于赌博游戏中的输赢次数,并写出巨著《猜度术》。他还解决了悬链线问题(1690 年),曲率半径公式(1694年),“伯努利双纽线”(1694年),“伯努利微分方程”(1695年),“等周问题”(1700年)等。另外,他非常钟爱对数螺旋线,最为人们津津乐道的轶事之一,是雅各布醉心于研究对数螺线,这项研究从1691年就开始了。他发现,对数螺线经过各种变换后仍然是对数螺线,如它的渐屈线和渐伸线是对数螺线,自极点至切线的垂足的轨迹,以极点为发光点经对数螺线反射后得到的反射线,以及与所有这些反射线相切的曲线(回光线)都是对数螺线。他惊叹这种曲线的神奇,竟在遗嘱里要求后人将对数螺线刻在自己的墓碑上,并附以颂词“纵然变化,依然故我”,用以象征死后永生不朽。

还有个约翰· 伯努利,他除了解决悬链线问题(1691年),提出洛必达法则(1694年)、最速降线(1696年)和测地线问题(1697年),给出求积分的变量替换法(1699年),研究弦振动问题(1727年),出版《积分学教程》(1742年)等工作外,还有个对人类数学界最大的功劳,那就是:

培养了一位好学生——欧拉。

学物理学的同学也听说过另一位伯努利:丹尼尔· 伯努利,他是上面一位约翰的儿子。此人对流体动力学的贡献极大。并研究弹性弦的横向振动问题(1741~1743年),提出声音在空气中的传播规律 (1762年)。他的论著还涉及天文学(1734年)、地球引力 (1728年)、湖汐(1740年)、磁学(1743、1746年),振动理论(1747年)、船体航行的稳定(1753、1757年)和生理学 (1721、1728年)等。

扯远了,我们还是回到自然对数上来。

-----------分割线-----------

天才欧拉的诞生

现在,该轮到欧拉出场了。之前,我们先用些篇幅介绍这位欧拉先生。

欧拉的一生,称得上传奇。他不到十岁就开始自学《代数学》,要知道那时候很多欧洲的骑士还是大字不识呢。他在大学时得到约翰· 伯努利的提携,之后丹尼尔·伯努利又将他推荐到俄国彼得堡科学院。可以说,伯努利家族是欧拉的贵人。

欧拉可以用3天的时间计算出彗星轨道。

1771年彼得堡遭受大火灾,欧拉的书房毁于一旦。但是已经失明的他居然凭借记忆,用一年的时间重写出大部分论文。

欧拉写下886本书籍和论文,他死后彼得堡科学院花了47年才整理完毕。

欧拉可以背诵前100个质数的前10次幂。

欧拉创立了许多新的符号:课本上常见的如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等

几乎每个数学领域都有欧拉的名字:从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清。他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作。歌德巴赫猜想也是在他与歌德巴赫的通信中提出来的。欧拉还首先完成了月球绕地球运动的精确理论,创立了分析力学、刚体力学等力学学科,深化了望远镜、显微镜的设计计算理论。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数R有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a 、b 、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式,又把三角函数与指数函联结起来。

以上一长段,各位不想看就不看吧,这些在各位的高中数学中都学过。

在老师的指导下,欧拉很快提出了用无穷阶乘的倒数和来表示自然对数的底的公式。有了公式,就容易很多。据说他靠手算就算到了小数点之后23位。考虑到这位牛人记忆力超群,这样的事情似乎也很正常。

自然对数的出现,不但使悬链方程迎刃而解,而且对于当时很热门的天文学——西方的星象学——也具有重要意义。对数使得复杂的乘法运算可以转变为简单的加法,只要查阅对数表就可以了。同时,对数尺也应运而生。当然在计算器普及的今天,已经很少有人用这种东西了。

-----------分割线-----------

C版本

#include <stdio.h>
int main()
{
double A(double );
double e=1.0,f;
double n=1.0;

while(1)
{
f=1.0/A(n);
if(f>0.0000001)
{
n++;
e=e+f;
}
else
break;
}

printf("%0.16f\n",e);
return 0;
}

double A(double a)
{
double b=1,c=a;
for(;b<c;b++)
a=a*b;
return a;
}

TC++ 3.0下通过
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-04-05
e=(1+n)^n n∈常数

自然底数e的来源
e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名;也有时叫纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔引进对数。约翰·纳皮尔于1618年出版的对数著作附录中的一张表第一次提到常数e。e的意义就是自然增长的极限,是在单位时间内,持续的翻倍增长所能达到的极限值。e...

自然对数底e的来源
实际上e就是欧拉通过这个极限而发现的,它是个无限不循环小数,其值等于2.71828……。以e为底的对数叫做自然对数,用符号“ln”表示。 以e为底的对数(自然对数)和指数,从数学角度揭示了自然界的许多客观规律,比如指数函数“e的x次方”对x的微分和积分都仍然是函数本身。后人把这个规律叫做“自然律”,其中e是自然律...

自然底数e是如何得到的?它有什么奇特之处吗?
e是自然对数的底,也叫欧拉常数,也叫纳皮尔常数。最初纳皮尔发现对数的时候,用的其实是以1\/e为底的对数。首先把e看作是个常数的是雅各布·伯努利,他尝试计算n-∞时(1+1\/n)^n的极限。首先采用e这个符号的是欧拉。以下是e的一些奇特之处:e有这样神奇的连分数表示:e还可以写成这种形式:曲线...

自然对数e的来历?
e是自然对数的底数,是一个无限不循环小数,其值是2.71828……,是这样定义的:当n->∞时,(1+1\/n)^n的极限。注:x^y表示x的y次方。随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果到底是趋向于1还是无穷大呢?其实,是趋向于2.71828……,不信你用计算器计算一下,分别取n=1,...

为什么e是自然对数的底?
数学符号e代表自然对数的底数,是一个重要的数学常数,约等于2.71828。符号e并不是由某个特定的人创造出来的,它是在数学发展的过程中逐渐出现的。以下是关于e的一些历史和出现方式的介绍:数学符号e最早出现在17世纪,最早由瑞士数学家约翰·尼普尔斯(John Napier)引入,他在其著作《对数与数字的构造...

自然底数e的来源
自然底数e的由来:历史上误称自然对数为纳皮尔对数,取名于对数的发明者——苏格兰数学家纳皮尔(J.NapierA.D.16-17)。纳皮尔本人并不曾有过对数系统的底的概念,但它的对数相当于底数接近1\/e的对数。与它同时代的比尔吉(J.Burgi)则创底数接近e的对数。对于数列{(1+1\/n)^n},当n趋于正无穷时该...

为什么自然对数底数是e?
自然常数e(也叫自然底数、自然对数的底、Euler数、Napier常数……)的本质,是“单位循环模”。至于其数值(2.71828),那不过是它在十进制计数法下的表象(若是二进制,则是10.10110;若是四进制,则是2.23133;若是八进制,则是2.55760;若是十六进制,则是2.b7e13……)。“单位循环模”是...

自然对数底e的来源
自然对数的底e,一般认为是欧拉(Leonhard Euler,1707-1783,瑞士)在研究微积分的时候发现的。e=lim(1+1\/x)^x,当x趋近于正无穷时的极值。在计算中,一般取 e=1+1\/(1!)+1\/(2!)+1\/(3!)...,越多项越准确。与上次提到的圆周率相比,e对于人类的重要性并不像π那样显而易见。但是e...

欧拉数的推导史(自然对数底e)
在数学的璀璨星河中,数e犹如一道璀璨的光芒,其起源可追溯到16世纪约翰·纳皮尔的对数研究。首次亮相时,它作为简化复杂计算的神秘工具,悄然潜伏在繁琐的计算背后。然而,正是莱昂哈德·欧拉在18世纪的慧眼识珠,赋予了e“自然对数底”的尊崇名字,使其熠熠生辉。e的探索旅程并不像π那样备受瞩目,却...

自然对数的底数e
自然对数概念 常数e的含义是单位时间内,持续的翻倍增长所能达到的极限值。自然对数的底e是由一个重要极限给出的。e是一个无限不循环小数,其值约等于2.718281828459…,它是一个超越数。自然对数底e的由来 圆周率π生活中很容易被找到或被发现,一个圆的周长与其直径的比等于圆周率π。可自然对数的底...

相似回答