数学题 求S=1+1\/(1+2)+1\/(1+2+3)+……+1\/(1+2+3+4+……+n)=? 求...
1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……+1\/(1+2+3……+n)= 1+1\/[(1+2)×2÷2]+1\/[(1+3)×3÷2]+……+1\/[(1+n)×n÷2]——① = 2\/2+2\/(1+2)×2+2\/(1+3)×3+……+2\/(1+n)×n——② = 2×[1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/n-1\/(...
数学题解答器1+1\/(1+2) +1\/(1+2+3)+1\/(1+2+3+4)+……1\/(1+2+3+…20...
分母为:1+2+3+4+...+2011 通项为:n(n+1)\/2 所以每个分式为:1[n(n+1)\/2]=2\/n(n+1)=2[1\/n-1\/(n+1)]所以原式=2(1\/1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+...+1\/2012-1\/2013)=2(1-1\/2013)=2*2012\/2013 =4024\/2013 ...
数学问题:1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+………+1\/(1+2+3+...
自然数列前N项和1+2+3+……+N=N(N+1)\/2 所以这里就是求通项为2\/N(N+1)=2(1\/N - 1\/(N+1))的前N项和 所以S=2(1-1\/2 +1\/2-1\/3+……+1\/N -1\/(N+1))然后消去每一项的后一部分和下一项的前一部分 就有S=2(1-1\/(N+1))=2N\/(N+1)...
1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…+n)这个怎么计算啊
所以Sn=1+[1\/(1+2)]+〔1\/(1+2+3)〕+[1\/(1+2+3+4)]+……+[1\/(1+2+3+……+n)]=2[1\/1-1\/2]+2[1\/2-1\/3]+2[1\/3-1\/4]+...+2[1\/n-1\/(n+1)]=2[1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/(n-1)-1\/n+1\/n-1\/(n+1)]=2[1-1\/(n+1)]=2n\/(n+1...
数学计算。1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……+1\/(1+2+3+……+1...
因为1=1*2\/2 1+2=2*3\/2 ...1+2+3+4+...2003=2003*2004\/2 所以 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+4+...2003)=2(1\/1 - 1\/2)+2(1\/2 -1\/3) +2(1\/3-1\/4)+...+2(1\/2003-1\/2004)=2-2\/2004 =2-1\/1002 =2003\/1002 ...
1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+4+...+10)=?
(问题可如下分析:通项公式为an=2\/[(1+n)*n],求sn,其中*代表乘号.该类问题可将an裂项为2\/[1\/n-1\/(n+1)],然后相加即可)1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+4+...+10)=2\/[(1+1)*1]+2\/[(1+2)*2]+2\/[(1+3)*3]+2\/[(1+4)*4]+......
...题目描述 题目内容:求s=1+(1+2)+…+(1+2+3+…+n)的值,其中n由键盘...
S=1(1+1)\/2+2(2+1)\/2+3(3+1)\/2+…+n(n+1)\/2--> 2S=1(1+1)+2(2+1)+3(3+1)+…+n(n+1)--> 2S=(1^2+2^2+3^2+…+n^2)+(1+2+3+…+n)--> 2S=n(n+1)(2n+1)\/6+n(n+1)\/2--> 2S=n(n+1)(2n+1)\/6+3n(n+1)\/6--> 2S=n(n+1)(2n+1...
...我们老师也不知道做。 1+1\/(1+2)+1\/(1+2+3)+……+
1+1\/(1+2)+1\/(1+2+3)+……+1\/(1+2+3+……+n)=2\/1×2 +2\/2×3+2\/3×4+...+2\/n(n+1)=2×[1\/1×2 +1\/2×3+1\/3×4+...+1\/n(n+1)]=2×【1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/n-1\/(n+1)】=2×[1-1\/(n+1)]=2n\/(n+1)...
1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…100)=
第二种:因为:1+2=2*3\/2 1+2+3=3*4\/2 1+2+3+4=4*5\/2 1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*...
数列求和 1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...+n)
+1\/(n+3)]∑1/(n+1)(n+2)(n+3)=1\/2{(1\/2-1\/3-1\/3+1\/4)+(1\/3-1\/4-1\/4+1\/5)+(1\/4-1\/5-1\/5+1\/6)+(1\/6-1\/7-1\/7+1\/8)+...+[1\/(n+1)-1\/(n+2)-1\/(n+2)+1\/(n+3)]} =1\/2{1\/2-1\/3-1\/(n+2)+1\/(n+3)} ...