对任意的整数n都有(1/n)*[1/(n+1)]=1/n-1/(n+1)
1/2*1/3+1/3*1/4+1/4*1/5+1/6*1/7+1/7*1/8+1/8*1/9
=1/2-1/3+1/3-1/4+……+1/8-1/9
=1/2-1/9
=7/18
1/(2n-1)+1/(2n)-1/n=1/[(2n-1)x2n] 1006
原式=(1-1/3+1/3-1/5+1/5-1/7+……+1/99-1/101)÷2
=(1-1/101)÷2
=100/101 ÷2
=50/101
1/n=1/a+1/b,a=n+1,b=n(n+1),a+b=n+1+n(n+1)=(n+1)的平方
1/2×1/3 = 1/(2×3) = (3-2)/(2×3) = 3/(2×3) -2/(2×3) = 1/2 - 1/3
同样,1/3×1/4 = 1/3 - 1/4,后面的也这样变形
最后相加后只剩下 1/2 - 1/10 = 2/5
1/2*5+1/5*8+1/8*11+...+1/98*101
=1/3×(1/2-1/5+1/5-1/8+1/8-1/11+......1/98-1/101)
=1/3×(1/2-1/101)
=1/3×99/202
=33/202
1/(1*3)+1/(3*5)+1/(5*7)+1/(7*9)+1/(9*11)
=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+1/2(1/9-1/11)
=1/2(1-1/3+1/3-1/5+...+1/9-1/11)
=1/2(1-1/11)
=5/11
一般结论是:
2/(2n-1)=1/n+1/n(2n-1);(n>=2)
说明
计算下就好了
1/n+1/n(2n-1)=[(2n-1)+1]/n*(2n-1)=2/(2n-1);
验证
n=2;
2/(2n-1)=2/3
1/n+1/n(2n-1)=1/2+1/2*3=1/2+1/6;
n=3
2/(2n-1)=2/5
1/n+1/n(2n-1)=1/3+1/3*5=1/3+1/15
....
1/6+1/30=1/5
1/10+1/90=1/9
1\/2*1\/3+1\/3*1\/4+1\/4*1\/5...1\/2008*1\/2009 的简便算法
1\/3*1\/4=1\/12=1\/3-1\/4 以此类推,则1\/2008*1\/2009=1\/2008-1\/2009 所以原式=1\/2-1\/3+1\/3-1\/4+1\/4-1\/5……+1\/2008-1\/2009 =1\/2-1\/2009 =2007\/4018 青蛙:每天共上爬1\/12 因为最后1\/3可以一天爬完,所以只需算出前2\/3所用的时间+1天即为答案 2\/3除以1\/12=8天 ...
1\/2*1\/3+1\/3*1\/4+1\/4*1\/5+...+1\/99*1\/100
=1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+……+1\/99-1\/100 =1-1\/100=99\/100
用简便方法计算下面各题 1\/2*1\/3+1\/3*1\/4+1\/4*1\/5、、、+1\/2008*1\/...
1\/2*1\/3+1\/3*1\/4+1\/4*1\/5、、、+1\/2008*1\/2009 =1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+……+1\/2008-1\/2009 =1\/2-1\/2009 =2007\/4018
1\/2×1\/3+1\/3×1\/4+……
解析:1\/2×1\/3=1\/6=1\/2-1\/3,同理后面每相乘的两个数都可以转换成减法,即 1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5-1\/6+…+1\/99-1\/100 ;中间部分相同的数字两两抵消,最后为1\/2-1\/100=50\/100-1\/100= 49\/100。题目应用的解题方法是分数裂项数列求和,将数列中的每项(通项)分...
简算1\/2*1\/3+1\/3*1\/4+1\/4*1\/5+1\/5*1\/6
要知道1\/2*1\/3=1\/2-1\/3,1\/3*1\/4=1\/3-1\/4...所以 1\/2*1\/3+1\/3*1\/4+1\/4*1\/5+1\/5*1\/6 =1\/2-1\/3+1\/3-1\/4-1\/4-1\/5+1\/5-1\/6 =1\/2-1\/6 =1\/3
2分之1乘3分之1加3份之1乘4份之1加4份之1乘5份之1怎么简便算?_百度...
裂项则可 1\/2*1\/3+1\/3*1\/4+1\/4*1\/5 =1\/2-1\/3+1\/3-1\/4+1\/4-1\/5 =1\/2-1\/5 =3\/10
二分之一乘三分之一加三分之一乘四分之一加四分之一乘五分之一...九...
...1\/2*1\/3+1\/3*1\/4+1\/4*1\/5+……+1\/98*1\/99 =1\/2*3+1\/3*4+1\/4*5+……+1\/98*99 =(1\/2-1\/3)+(1\/3-1\/4)+(1\/4-1\/5)+……+(1\/98-1\/99)=1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+……+1\/98-1\/99 =1\/2-1\/99 =97\/198 ...
1\/2+1\/2*1\/3+1\/3*1\/4+1\/4*1\/5+...1\/49*1\/50=?
1\/2*1\/3=1\/2-1\/3 以此类推 原式可化为1\/2+1\/2-1\/3+1\/3-1\/4+++。。。+1\/49-1\/50 =1-1\/50=49\/50
1\/2×1\/3+1\/3×1\/4+1\/4×1\/5+...+1\/99×1\/100 简便解答这题,在线等...
1\/2×1\/3+1\/3×1\/4+1\/4×1\/5+...+1\/99×1\/100 =1\/6+1\/12+1\/20+...+1\/9900 =1\/2*3+1\/3*4+1\/4*5+...+1\/99*100 =1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+...+1\/99-1\/100 =1\/2-1\/100 =49\/100 (好像是这样的,不知道有没有算错)...
1\/2+1\/3+1\/4+1\/5+……加起来等于1?
1\/2+1\/3+1\/4就已经超过一了,那些加起来要大于1 因该是无穷大 因为前两项相加=2\/3 前三项相加=3\/4 以此类推 最终结果是2002\/2003 你加几下不就发现规律了吗