微分方程的通解公式

如题所述

微分方程的通解公式:

1、一阶常微分方程通解

dydx+p(x)y=0dydx+p(x)y=0。

2、齐次微分方程通解

y=ce−∫p(x)dx。

3、非齐次微分方程通解

y=e−∫p(x)dx(c+∫q(x)e∫p(x)dxdx)。

4、二阶常系数齐次线性微分方程通解

y′′+py′+qy=0(∗),其中p,q为常数求解Δ=r2+pr+q=0解出Δ两个根r1,r2。

温馨提示:内容为网友见解,仅供参考
无其他回答

微分方程的通解公式
微分方程的通解公式:1、一阶常微分方程通解 dydx+p(x)y=0dydx+p(x)y=0。2、齐次微分方程通解 y=ce−∫p(x)dx。3、非齐次微分方程通解 y=e−∫p(x)dx(c+∫q(x)e∫p(x)dxdx)。4、二阶常系数齐次线性微分方程通解 y′′+py′+qy=0(∗),其中p,q为常数求解Δ...

微分方程的通解公式是什么?
微分方程的通解公式:1、一阶常微分方程通解:dydx+p(x)y=0dydx+p(x)y=0.2、齐次微分方程通解:y=ce−∫p(x)dx。3、非齐次微分方程通解:y=e−∫p(x)dx(c+∫q(x)e∫p(x)dxdx)。4、二阶常系数齐次线性微分方程通解:y′′+py′+qy=0(∗),其中p...

微分方程的通解公式
微分方程的通解公式:y=y1+y* = 1\/2 + ae^(-x) +be^(-2x),其中:a、b由初始条件确定,例:y''+3y'+2y = 1,其对应的齐次方程的特征方程为s^2+3s+2=0,因式分(s+1)(s+2)=0,两个根为:s1=-1 s2=-2。y''+py'+qy=0,等式右边为零,为二阶常系数齐次线性方程;y''+...

微分方程的通解如何求解?
通解公式是:∫e^(-p(x))dx,这个积分是个不定积分,本身就包含了一个常数。不用再写:∫e^(-p(x))dx+C了。正常情况下,微分方程方程都有边界条件和\/或初始条件,当知道p(x)的具体形式时,算这个不定积分,应该保留一个常数,然后用边界条件和\/或初始条件来确定常数的值,得到完全确定的解。

微分方程的通解怎么求
微分方程的解通常是一个函数表达式y=f(x),(含一个或多个待定常数,由初始条件确定)。例如:其解为:其中C是待定常数;如果知道 则可推出C=1,而可知 y=-\\cos x+1。一阶线性常微分方程 对于一阶线性常微分方程,常用的方法是常数变易法:对于方程:y'+p(x)y+q(x)=0,可知其通解:然后...

微分方程的通解怎么求?
全微分方程求通解如下:u(x,y)=P(x,y)dx+Q(x,y)=C全微分方程,又称恰当方程。一、全微分 1、如果函数z=f(x, y) 在(x, y)处的全增量,Δz=f(x+Δx,y+Δy)-f(x,y),可以表示为Δz=AΔx+BΔy+o(ρ)。2、其中A、B不依赖于Δx, Δy,仅与x,y有关,ρ趋近于O(ρ=√...

微分方程通解公式
微分方程通解公式包括如下:1、对于一阶常微分方程,通解公式为:dy\/dx=f(x)的通解dydx=f(x)dx。2、对于二阶常系数齐次线性微分方程,例如:y+py+qy=0,其通解公式为:y=e−∫p(x)dx(c+∫q(x)e∫p(x)dxdx)。这些通解公式是如何得出的呢?首先,我们需要理解微分方程的解...

微分方程的通解是什么意思?
第一种:由y2-y1=cos2x-sin2x是对应齐方程的解可推出cos2x、sin2x均为齐方程的解,故可得方程的通解是:y=C1cos2x+C2sin2x-xsin2x。第二种:通解是一个解集……包含了所有符合这个方程的解;n阶微分方程就带有n个常数,与是否线性无关;通解只有一个,但是表达形式可能不同,y=C1y1(x)+C2...

微分方程怎么求通解?
微分方程求通解的方法:1、△=p^2-4q>0,特征方程有两个相异实根λ1,λ2,通解的形式为y(x)=C1*e^(λ1*x)+C2*e^(λ2*x)。2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y(x)=(C1+C2*x)*e^(λ1*x)。3、△=p^2-4q<0,特征方程具有共轭复根α+-(i...

微分方程,用通解公式,要详细解答过程!
解:设y'-y\/x=0,有dy\/y=dx\/x,两边积分有y=x。再设方程的通解为y=xu(x),则y'=u(x)+u'(x)x,代入原方程,经整理有,u'(x)=(-2lnx)\/x^2。两边再积分有,u(x)=(2\/x)(lnx+1)+C。∴原方程的通解为,y=2(lnx+1)+cx,其中c为常数 ...

相似回答
大家正在搜