高中数学的不等式的十种类型及其解法

我就知道大概有绝对值不等式、抽象不等式....其他有啥啊,解法都啥啊谢谢了..O(∩_∩)O

第1个回答  2019-08-21
不等式,肯定要掌握基本的不等式噻!
不等式的题也是千变万化的,很灵活,不多看点题肯定是不行的。
象柯西不等式,排序不等式都是很重要的不等式。经常考虑一题有没有多种的证明方法,时常这么考虑是有好处的。敢说不懂柯西不等式的人在不等式里根本没入门,不懂排序不等式的人根本不入流。
先给你把两个不等式证明了!
柯西不等式是一个非常重要的不等式,灵活巧妙的应用它,可以使一些较为困难的问题迎刃而解。可在证明不等式,解三角形相关问题,求函数最值,解方程等问题的方面得到应用
柯西不等式的一般证法有以下几种:
■①Cauchy不等式的形式化写法就是:记两列数分别是ai,
bi,则有
(∑ai^2)
*
(∑bi^2)

(∑ai
*bi)^2.
我们令
f(x)
=
∑(ai
+
x
*
bi)^2
=
(∑bi^2)
*
x^2
+
2
*
(∑ai
*
bi)
*
x
+
(∑ai^2)
则我们知道恒有
f(x)

0.
用二次函数无实根或只有一个实根的条件,就有
Δ
=
4
*
(∑ai
*
bi)^2
-
4
*
(∑ai^2)
*
(∑bi^2)

0.
于是移项得到结论。
■②用向量来证.
m=(a1,a2......an)
n=(b1,b2......bn)
mn=a1b1+a2b2+......+anbn=(a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+......+bn^2)^(1/2)乘以cosX.
因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+.....+bn^2)^(1/2)
这就证明了不等式.
柯西不等式还有很多种,这里只取两种较常用的证法.
[编辑本段]【柯西不等式的应用】
柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。
■巧拆常数:
例:设a、b、c
为正数且各不相等。
求证:
2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)
分析:∵a
、b
、c
均为正数
∴为证结论正确只需证:2*(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9
而2(a+b+c)=(a+b)+(a+c)+(c+b)

9=(1+1+1)(1+1+1)
证明:Θ2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)(1+1+1)=9

a、b
、c
各不相等,故等号不能成立
∴原不等式成立。
排序不等式是高中数学竞赛大纲、新课标
要求的基本不等式。
设有两组数
a
1
,
a
2
,……
a
n,
b
1
,
b
2
,……
b
n
满足
a
1

a
2
≤……≤
a
n,
b
1

b
2
≤……≤
b
n
则有
a
1
b
n
+
a
2
b
n-1+……+
a
n
b
1≤
a
1
b
t
+
a
2
b
t
+……+
a
n
b
t

a
1
b
1
+
a
2
b
2
+
a
n
b
n
式中t1,t2,……,tn是1,2,……,n的任意一个排列,
当且仅当
a
1
=
a
2
=……=
a
n

b
1
=
b
2
=……=
b
n
时成立。
排序不等式常用于与顺序无关的一组数乘积的关系。可以先令a1>=a2>=a3>=...>=an,确定大小关系.
使用时常构造一组数,使其与原数构成乘积关系,以便求解。适用于分式、乘积式尤其是轮换不等式的证明。
以上排序不等式也可简记为:
反序和≤乱序和≤同序和.
证明时可采用逐步调整法。
例如,证明:其余不变时,将a
1
b
1
+
a
2
b
2
调整为a
1
b
2
+
a
2
b
1
,值变小,只需作差证明(a
1
-a
2
)*(b
1
-b
2
)≥0,这由题知成立。
依次类推,根据逐步调整法,排序不等式得证。
时常考虑不等式可否取等也是有必要的!
当0<A≤π/2
求函数f(x)=sinA+4/sinA的值域!
,你是否能做得来?
利用函数单调性是解决不等式的很好办法,当你看到关于n的不等式,要自觉想到函数单调性的应用。

高中数学中,有哪些常用的不等式?
平均不等式、柯西不等式、闵可夫斯基不等式、贝努利不等式、赫尔德不等式、契比雪夫不等式、排序不等式、含有绝对值的不等式、琴生不等式、艾尔多斯-莫迪尔不等式。不等式简介如下:用符号“>”“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。通常不等式中的数是实数,字...

不等式的解法高中数学
不等式的解法:大小比较(方法有作差法,作商法,图象法,函数性质法)。证明题(比较法,反证法,换元法,综合法。)恒成立问题(判别式法,分离参数法)。1、以后解不等式最后的结果都要写成集合或区间。2、对一元二次不等式,上面的结论只是在条件a>0时 才成立。那么解一元二次不等式时a<0一定...

高中数学基本不等式有哪些?
4、三角不等式 对于任意两个向量b其加强的不等式,这个不等式也可称为向量的三角不等式。5、四边形不等式 如果对于任意的a1≤a2<b1≤b2,有m[a1,b1]+m[a2,b2]≤m[a1,b2]+m[a2,b1],那么m[i,j]满足四边形不等式。基本性质 ①如果x>y,那么y<x;如果y<x,那么x>y(对称性)。②如果...

高中数学,不等式的10种解题方法,附知识点合集
一、十种经典解题法概览<\/这里为你揭示高中数学解不等式的十种核心方法:比较法,综合法,分析法,反证法,数学归纳法,以及更进阶的放缩法、构造法(包括构造函数、方程模型等)、换元法、估计法、调整法、假设法、概率法、求导法和递推法。每一种都是攻克难题的有力武器。1. 分段讨论法<\/别小看...

高中不等式类型
一元一次不等式、一元二次不等式、含参数的一元二次不等式、高次不等式、分式不等式、绝对值不等式、均值不等式、三角不等式,1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,...

高中数学,不等式的10种解题方法,附知识点合集
解不等式是高中数学中的重要环节,本文总结了十种经典解题方法和不等式的性质定理,旨在帮助掌握不等式解题技巧的同学。一、基本方法包括比较法、综合法、分析法、反证法、数学归纳法,以及放缩法、构造法、换元法、估计法、调整法、假设法、概率法、求导法、递推法、待定系数法等。二、在证明不等式时,...

不等式公式高中数学
高中阶段的不等式公式:一、两个数的不等式公式 1、若a-b>0,则a>b(作差)。2、若a>b,则a±c>b±c。3、若a+b>c,则a>b-c(移项)。4、若a>b,则c>d(不等号同向相加成立,两个大的加起来,肯定比两个小的加起来大)。5、若a>b>0,c>d>0则ac>bd(两个大正数相乘肯定比...

高中数学:不等式与不等式组的解法
高中数学中,解不等式与不等式组的方法涉及一元一次、二次不等式,以及分式、绝对值、无理和指数对数等类型的不等式。以下是具体步骤和实例:1. 一元一次不等式:通过比较系数确定解集,如ax>b,根据a的符号调整解集范围。例1:解ax-2>b+2x,根据a与2的大小关系确定解集。2. 一元二次不等式:通过...

高中数学中有哪几个基本不等式?
高一数学基本不等式公式:假设a,b是正数,既然如此那,(a+b)\/2≥(根号下ab),当且仅当a=b时,等号成立,我们称上面说的不等式为基本不等式。若a,b∈R,则a平方+b平方≥2ab或ab≤(a平方+b平方)\/2。若a,b∈R,则(a平方+b平方)\/2≥[(a+b)\/2]的平方。若a,b∈R※,则a+b=...

高中数学不等式公式有哪些
1、均值不等式:均值不等式,又称为平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。2、伯努利不等式:对任意的正整数n>1,以及任意的x>-1,有证明:采用数学归纳法:n=1时...

相似回答