高中不等式类型

如题所述

一元一次不等式、一元二次不等式、含参数的一元二次不等式、高次不等式、分式不等式、绝对值不等式、均值不等式、三角不等式,
1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.
2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.
3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用.
4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形→判断符号(值).
5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.
6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.
7.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
8.不等式应用问题体现了一定的综合性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等”三个条件缺一不可,有时需要适当拼凑,使之符合这三个条件.利用不等式解应用题的基本步骤:10审题,20建立不等式模型,30解数学问题,40作答。
9.注意事项:
⑴解不等式的基本思想是转化、化归,一般都转化为最简单的一元一次不等式(组)或一元二次不等式(组)来求解,。
⑵解含参数不等式时,要特别注意数形结合思想,函数与方程思想,分类讨论思想的录活运用。
⑶不等式证明方法有多种,既要注意到各种证法的适用范围,又要注意在掌握常规证法的基础上,选用一些特殊技巧。如运用放缩法证明不等式时要注意调整放缩的度。
⑷根据题目结构特点,执果索因,往往是有效的思维方法。

参考资料:不等式问题的题型与方法

温馨提示:内容为网友见解,仅供参考
第1个回答  2010-09-06
一元一次不等式、一元二次不等式、含参数的一元二次不等式、高次不等式、分式不等式、绝对值不等式

不等式有哪些
一、基本不等式 基本不等式是最常见的不等式形式,它表示两个数或表达式之间的大小关系。例如,对于任意两个实数a和b,如果a大于b,则记作a > b。基本不等式是数学中比较关系的基础。二、绝对值不等式 绝对值不等式通过绝对值的性质来表示两个数或表达式的大小关系。形如|x| < a 或 |x - h|...

高中不等式类型
一元一次不等式、一元二次不等式、含参数的一元二次不等式、高次不等式、分式不等式、绝对值不等式、均值不等式、三角不等式,1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互...

不等式有多少种?
10.三角不等式:对于任意的实数a、b和c,有|a+b|≤|a|+|b|。11.均值不等式:对于任意的正实数a1、a2、...、an,有(a1+a2+...+an)\/n≥√(a1*a2*...*an)。12.柯西-施瓦茨不等式:对于任意的实数a1、a2、...、an和b1、b2、...、bn,有|(a1*b1+a2*b2+...+an*bn)|≤(√...

基本不等式的变式
1、不等式类型:不等式符号,基本不等式可以是小于(<)、小于等于(≤)、大于(>)、大于等于(≥)等不等式类型。绝对值不等式,这种不等式涉及到绝对值,例如|x-3|<5。分式不等式,分式不等式中包含分数,例如(2x+1)\/3>4。2、不等式方向:正向不等式,这些不等式要求左边的数大于右边的数...

常见的不等式
常见的不等式有一元一次不等式、一元二次不等式、绝对值不等式。1、一元一次不等式:一般形式为ax+b>c或ax+b<c,其中a、b、c为实数,x为未知数。一元一次不等式是我们学习不等式的第一步,也是最基本的不等式类型。在解一元一次不等式时,需要分别讨论a的正负性,然后将不等式中的未知数x移项...

高中不等式的解法
根据不等式的不同类型来提供解法 主要分为基本不等式定理,一元一或二次不等式,不等式分式,含参不等式 运用的数学思想:1、分类讨论的思想;2、数形结合的思想;3、等与不等的化归思想 1.对于基本不等式定理 公式法:2.对于一元一次不等式 3.对于一元二次不等式 求解流程:一化:化二次项前的...

高中数学:不等式与不等式组的解法
高中数学中,解不等式与不等式组的方法涉及一元一次、二次不等式,以及分式、绝对值、无理和指数对数等类型的不等式。以下是具体步骤和实例:1. 一元一次不等式:通过比较系数确定解集,如ax>b,根据a的符号调整解集范围。例1:解ax-2>b+2x,根据a与2的大小关系确定解集。2. 一元二次不等式:通过...

不等式有哪几种类型?
常用不等式公式:1、√\/2≥\/2≥√ab≥2\/;2、√≤\/2;3、a^2+b^2≥2ab4、ab≤^2\/4;5、||a|-|b||≤|a+b|≤|a|+|b|。基本不等式的四种形式:a_+b__2abab_/2a+b_2√abab__基本不等式应用:1、应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”。所谓...

高中数学不等式总结
;;。定理1:若 ,则 ;若 ,则 .即 。说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。定理2:若 ,且 ,则 。说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数;定理2称不等式的传递性。定理3:若 ,则 。说明:(1)不等式的...

基本不等式是高一学的吗
基本不等式属于高一数学第一个难点,尤其要注重题型的分类。基本不等式是数学中的一个重要概念,也是解决不等式问题的基础。它涉及到不等式的性质、比较大小和运算规则等内容。基本不等式可以分为三类:一元一次不等式、一元二次不等式和绝对值不等式。在解决不等式问题时,必须根据不等式的类型和性质选择...

相似回答