必修一数学第二章基本初等函数以及奇偶性相关概念,注意点有些什么?怎样能够了解的条理…

高手进…好的话加分…

第1个回答  2013-10-20
一、集合与简易逻辑: 一、理解集合中的有关概念 (1)集合中元素的特征: 确定性 , 互异性 , 无序性 。 (2)集合与元素的关系用符号=表示。 (3)常用数集的符号表示:自然数集 ;正整数集 ;整数集 ;有理数集 、实数集 。 (4)集合的表示法: 列举法 , 描述法 , 韦恩图 。 (5)空集是指不含任何元素的集合。 空集是任何集合的子集,是任何非空集合的真子集。 二、函数 一、映射与函数: (1)映射的概念: (2)一一映射:(3)函数的概念: 二、函数的三要素:相同函数的判断方法:①对应法则 ;②定义域 (两点必须同时具备) (1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法: (2)函数定义域的求法: ①含参问题的定义域要分类讨论; ②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。(3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式; ②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 三、函数的性质: 函数的单调性、奇偶性、周期性 单调性:定义:注意定义是相对与某个具体的区间而言。 判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法。 应用:比较大小,证明不等式,解不等式。 奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。 判别方法:定义法, 图像法 ,复合函数法 应用:把函数值进行转化求解。 周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。 其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期. 应用:求函数值和某个区间上的函数解析式。 四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。 常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考) 平移变换 y=f(x)→y=f(x+a),y=f(x)+b 注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。 (ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义。 对称变换 y=f(x)→y=f(-x),关于y轴对称 y=f(x)→y=-f(x) ,关于x轴对称 y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称 y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数) 伸缩变换:y=f(x)→y=f(ωx), y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。 一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称; 五、反函数: (1)定义: (2)函数存在反函数的条件:(3)互为反函数的定义域与值域的关系:(4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域)。 (5)互为反函数的图象间的关系:(6)原函数与反函数具有相同的单调性; (7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。 七、常用的初等函数: (1)一元一次函数:(2)一元二次函数: 一般式两点式顶点式二次函数求最值问题:首先要采用配方法,化为一般式, 有三个类型题型: (1)顶点固定,区间也固定。如: (2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区
第2个回答  2013-10-20
不好意思,你表达的意思我不太懂!但如果有不会的题目可以请教我!1358538501

必修一数学第二章基本初等函数以及奇偶性相关概念,注意...
回答:一、集合与简易逻辑: 一、理解集合中的有关概念 (1)集合中元素的特征: 确定性 , 互异性 , 无序性 。 (2)集合与元素的关系用符号=表示。 (3)常用数集的符号表示:自然数集 ;正整数集 ;整数集 ;有理数集 、实数集 。 (4)集合的表示法: 列举法 , 描述法 , 韦恩图 。 (5)空集是...

高一洋葱数学必修一二
- 利用二次函数的性质判断函数的单调性 - 利用图象判断函数的单调性 - 函数的奇偶性:偶函数、奇函数 - 函数的解析表达式:凑配法、待定系数法、换元法、消参法 - 函数最大(小)值:利用二次函数的性质、图象法、函数单调性 九、分段函数 - 在定义域的不同部分上有不同的解析表达式的函数 - ...

高一数学必修一基本初等函数知识点总结
正弦函数 sinθ=y\/r 余弦函数 cosθ=x\/r 正切函数 tanθ=y\/x 余切函数 cotθ=x\/y 正割函数 secθ=r\/x 余割函数 cscθ=r\/y 同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)c...

跪求高一数学必修1和2的重要知识点总结
1.集合的概念及其表示意思;2.集合间的关系;3.函数的概念及其表示;4.函数性质(单调性、最值、奇偶性)第二章 基本初等函数(I)一.指数与对数1.根式;2.指数幂的扩充;3.对数;4.根式、指数式、对数式之间的关系;5.对数运算性质与指数运算性质二.指数函数与对数函数1.指数函数与对数函数的图像与性质;2.指数函数...

高中数学必修一各章知识点
高中高一数学必修1各章知识点总结第一章 集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1.元素的确定性; 2.元素的互异性; 3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者...

高一数学必修一知识点总结
必修1 第一章 集合与函数概念 1.集合的概念及其表示意思;2.集合间的关系;3.函数的概念及其表示;4.函数性质(单调性、最值、奇偶性)第二章 基本初等函数(I)一.指数与对数 1.根式;2.指数幂的扩充;3.对数;4.根式、指数式、对数式之间的关系;5.对数运算性质与指数运算性质 二.指数函数与...

高一数学必修1主要内容有哪些?
集合的分类、子集的概念、子集的性质、有限集合的子集个数、关于集合的运算:注意交集或并集中“或”“且”的意思,“或”两者皆可的意思“且”是两者都有的意思、交集与并集的有关性质、全集与补集的性质、函数的定义、三要素、函数的定义域、函数的值域、函数的单调性、单调区间、奇偶性以及奇偶性...

高三复习理科数学的目录
必修1 第一章集合与函数概念 §1.1 集合的含义与表示、集合间的基本关系 §1.2 集合的基本运算 §1.3 函数及其表示 §1.4 函数的单调性 §1.5 函数的奇偶性与周期性 第二板块 必修1 第二章基本初等函数(I)§2.1 指数函数 §2.2 对数函数 §2.3 幂函数 §2.4 函数的图象 §2.5...

高一数学函数、初等函数、极限、连续、导数
1.1.1 区间、邻域 1.1.2 函数的概念 1.1.3 函数的几个简单性质 1.1.3.1 函数的有界性 1.1.3.2 函数的单调性 1.1.3.3 函数的奇偶性 1.1.3.4 函数的周期性 1.1.4 复合函数、反函数 1.1.4.1 复合函数 1.1.4.2 反函数 1.2 初等函数 1.2.1 基本初等函数 1.2.2 ...

高一数学函数怎么做啊???
首先,理解函数的概念,明确函数是两个非空数集之间的一种对应关系。其次,掌握常见函数的性质,如单调性、奇偶性、周期性等。对于单调性,可通过定义法、图象法等来判断;奇偶性要根据函数的对称性进行判断;周期性则需找到函数值重复出现的规律。再者,学会函数的表示方法,包括解析式法、图象法和列表法...

相似回答