泰勒公式推导过程是什么?

如题所述

泰勒公式:将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。

若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:

其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小

扩展资料

泰勒公式是数学分析中重要的内容,也是研究函数极限和估计误差等方面不可或缺的数学工具,泰勒公式集中体现了微积分“逼近法”的精髓,在近似计算上有独特的优势。

利用泰勒公式可以将非线性问题化为线性问题,且具有很高的精确度,因此其在微积分的各个方面都有重要的应用。泰勒公式可以应用于求极限、判断函数极值、求高阶导数在某点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。 

温馨提示:内容为网友见解,仅供参考
无其他回答

泰勒公式的推导
泰勒公式的推导如下:将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x。若函数f(x)在含有x的开区间(a,b)有直到n...

泰勒公式展开式推导
泰勒公式是一种将一个函数在某一点附近展开成无限项多项式的方法,其推导过程如下:设$f(x)$在$x=a$处有$n$阶导数,则有:f(x)=\\sum_{k=0}^{n}\\frac{f^{(k)}(a)}{k!}(x-a)^k+\\frac{f^{(n+1)}(\\xi)}{(n+1)!}(x-a)^{n+1} 其中,$\\xi$是$x$和$a$之间的某...

泰勒公式常用公式推导过程
泰勒公式常用公式推导过程如下:1、幂级数展开:泰勒公式的基础是幂级数展开。对于一个给定的函数f(x),我们可以在某个点a处将其展开为幂级数形式。这个幂级数可以表示为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2\/2!+f'''(a)(x-a)^3\/3!+...+f(n)(a)(x...

泰勒公式详细推导过程
泰勒公式详细推导过程如下:泰勒公式推导:将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。其中,Rn(x)=f(n+1)δ(x-x0)^(n+1)/(n+1)!,此处的δ为x0与x之间的某个值。f(x)称为n阶泰勒公式,其中,P(x)=f(x0)+f'...

泰勒公式的推导过程 泰勒公式是怎样推导的
泰勒公式的推导过程为:若函数f(x)在包含x0的某个开区间(a,b)上具有(n+1)阶的导数,那么对于任一x∈(a,b),有f(x)=f(x0)/0!+f'(x0)/1!+f'(x0)/2!+...+f(n)'(x0)/n!+Rn(x)。其中,Rn(x)=f(n+1)δ(x-x0)^(n+1...

泰勒公式怎么推导?
泰勒公式 余项 泰勒公式的余项Rn(x)可以写成以下几种不同的形式:1、佩亚诺(Peano)余项:这里只需要n阶导数存在。2、施勒米尔希-罗什(Schlomilch-Roche)余项:其中θ∈(0,1),p为任意正实数。(注意到p=n+1与p=1分别对应拉格朗日余项与柯西余项)[2]3、拉格朗日(Lagrange)余项:其中θ∈(...

泰勒公式推导是什么?
泰勒公式推导:将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x。若函数f(x)在含有x的开区间(a,b)有直到n+1阶...

泰勒公式的推导过程怎么写?
首先x是自变量。并注意到f(x+1)对x求导为f'(x+1)*1=f'(x+1)所以在x0处的二级局部泰勒展开式为:Tn(x)=f(x0+1)+f'(x0+1)(x-x0)+(1\/2!)f''(x0+1)(x-x0)^2+o(x^2)注意(x-x0)^n表示n阶无穷小量,所以不能加1 泰勒公式是将一个在x=x0处具有n阶导数的函数f(...

泰勒公式的推导过程是什么?
泰勒公式(Taylor's formula) 带Peano余项的Taylor公式(Maclaurin公式):可以反复利用L'Hospital法则来推导, f(x)=f(x0)+f'(x0)\/1!*(x-x0)+f''(x0)\/2!*(x-x0)^2+…+f^(n) (x0)\/n!(x-x0)^n+o((x-x0)^n) 泰勒中值定理(带拉格郎日余项的泰勒公式):若函数f(x)...

泰勒公式推导过程是什么?
泰勒公式:将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:其中,表示f(x)的n阶导数,等号后的多项式...

相似回答
大家正在搜