统计学常考的名词解释和简答有哪些

重点是能提供简答的问题吗

1、统计学:是运用数理统计的基本原理和方法研究预防医学和卫生事业管理中资料的收集,整理和分析的一门应用科学。具体地讲,是按照设计方案去收集、整理、分析数据,并对数据结果进行解释,从而做出比较正确的结论。

2、总体:是根据研究目的确定同质的所有观察单位某种变量的集合。

3、变异:同一性质的事物,其观察值(变量值)之间的差异。

4、抽样研究:从所研究的总体中随机抽取一部分有代表性的样本进行研究,用样本指标推论总体,最终达到了解总体的目的。这种用样本指标推论总体参数的方法称为抽样研究。

5、统计描述:用统计图表或计算统计指标的方法表达一个特定群体的某种现象或特征。

6、统计推断:根据样本资料的特性对总体的特性作估计或推论的方法称统计推断,常用方法是参数估计和假设检验。

7、概率:是指某事件出现可能性大小的度量,以符号P表示。

8、医学参考值范围:参考值范围又称正常值范围。医学上常把包括绝大多数人某项指标的数值范围称为该指标的参考值范围。

9、正态分布规律:实际工作中,经常需要了解正态曲线下横轴上的一定区域的面积占总面积的百分数,用以估计该区间的观察例数占总例数的百分数,或变量值落在该区间的频数或概率。

10、可比性:是指对研究结果有影响的非处理因素在各处理组之间尽可能相 同或相近。

11、动态数列:是一系列按时间顺序排列起来的统计指标,包括绝对数、相对数或平均数,用以说明事物在时间上的变化和发展趋势。

12、抽样误差:在同一总体中随机抽取样本含量相同的若干样本时,样本指标之间的差异以及样本指标与总体指标的差异。

13、标准误:表示样本均数间变异程度。

14、率的抽样误差:抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差,率之间的差异称为率的抽样误差。

15、参数估计:是指用样本指标(称为统计量)估计总体指标(称为参数)。

16、可信区间:总体参数的所在范围通常称为参数的可信区间或置信区间,即该区间以一定的概率(如95%或99%)包含总体参数。

17、I型错误:拒绝了实际撒谎能够成立的H0,这类“弃真”的错误称为I型错误。

18、II型错误:接受了实际撒谎能够不成立的H0,这类“存伪”的错误称为II型错误。

19、检验效能:1-b称为检验效能又称为把握度。它的含义是:当两总体确实有差别时,按规定的检验水准a,能够发现两总体间差别的能力。

20、四格表资料:两个样本率的资料又称为四格表资料,在四格表资料中两个样本的实际发生频数和实际未发生频数为基本数据,其他数据均可由这四个基本数据推算出来。

21、列联表资料:对同一样本资料按其两个无序分类变量(行变量和列变量)归纳成双向交叉排列的统计表,其行变量可分为R类,列变量可分为C类,这种表称为R*C列联表。

22、参数检验:是一种要求样本来自总体分布型是已知的(如正态分布),在这种假设的基础上,对总体参数(如总体均数)进行统计推断的假设检验。

23、非参数检验:是一种不依赖总体分布类型,也不对总体参数(如总体均数)进行统计推断的假设检验。

24、秩次:即通常意义上的序号,实际上就是将观察值按顺序由小到大排列,并用序号代替了变量值本身。

25、直线相关系数:它是说明具有直线关系的两个变量间,相关关系的密切程度与相关方向的统计指标。相关系数没有单位,取值范围是-1〈=r〈=1,r的绝对值越大表明两变量的关系越密切。

26、完全负相关:这是一种极为特殊的负相关关系,从散点图上可以看出,由x与y构成的散点完全分布在一条直线上,x增加,y相应减少,算得的相关系数r=-1。

27、正相关:它是说明具有直线关系的两个变量间,存在有正的相关方向,即当x增加时,y有相应增大的趋势,所算得的相关系数r为正值。

28、等级相关:是对等级数据作相关分析,它又称为秩相关,是一种非参数统计方法。

29、评价:是通过对某些标准来判断观测结果,并赋予这种结果以一定的意义和价值的过程。

30、综合评价:是指人们根据不同的评价目的,选择相应的评价形式,据此选择多个因素或指标,并通过一定的数学模型,将多个评价因素或指标转化为能反映评价对象总体特征的信息。

31、优序法:为了比较某几个事物或方案的优劣,在选定各项评价指标后,将待评价的对象或方案就各项评价指标的测量值大小分别排列,并分别对各序号(等级)以相应的评分值即优序数,然后综合诸评价指标,分别计算评价对象的总赋优序数,并按总赋优序大小评定其优顺序的方法即优序法。

32、Topsis:Topsis法常用于系统工程中有限方案多目标决策分析,此外,也可用于效益评价、卫生决策和卫生事业管理等多领域。

33、根本死因:WHO规定,根本死因是指:“(a)引起直接导致死亡的一系列病态事件的那些疾病或损伤,或者(b)造成致命损伤的事故或暴力的情况。”

34、卫生服务需要:是指人们因疾病影响健康,引起人体正常活动的障碍,实际应当接受各种卫生服务的需要(如预防保健、治疗、康复)。

35、卫生服务调查统计:是卫生统计的主要内容之一,卫生服务调查统计是从卫生服务资料的设计、收集、整理、分析的角度,来阐述卫生服务研究的特点、研究方法和注意事项,以便使卫生服务研究服务更具有科学性。

36、卫生服务调查:是指对卫生服务状况、人群健康的危险因素、人群卫生服务的需求和利用、卫生服务资源的分配和利用所进行的一种社会调查。

37、统计表:是以表格的形式列出统计指标,它是对资料进行统计描述时的一种常用手段。

38、统计图:是以各种几何图形(如点、线、面或立体)显示数据的大小、升降、分布以及关系等,它也是对资料进行统计描述时的一种常用手段。

39、均数的抽样误差:统计学上,对于抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差。

统计学概述
统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策提供依据和参考。它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。
统计学主要又分为描述统计学和推断统计学。给定一组数据,统计学可以摘要并且描述这份数据,这个用法称作为描述统计学。另外,观察者以数据的形态建立出一个用以解释其随机性和不确定性的数学模型,以之来推论研究中的步骤及母体,这种用法被称做推论统计学。这两种用法都可以被称作为应用统计学。另外也有一个叫做数理统计学的学科专门用来讨论这门科目背后的理论基础。
[编辑本段]统计学的发展历程
统计学的英文statistics最早是源于现代拉丁文statisticum collegium (国会)以及意大利文 statista (国民或政治家)。 德文Statistik,最早是由Gottfried Achenwall(1749)所使用,代表对国家的资料进行分析的学问,也就是“研究国家的科学”。在十九世纪统计学在广泛的数据以及资料中探究其意义,并且由John Sinclair引进到英语世界。
统计学是一门很古老的科学,一般认为其学理研究始于古希腊的亚里斯多德时代,迄今已有两千三百多年的历史。它起源于研究社会经济问题,在两千多年的发展过程中,统计学至少经历了“城邦政情”,“政治算数”和“统计分析科学”三个发展阶段。所谓“数理统计”并非独立于统计学的新学科,确切地说它是统计学在第三个发展阶段所形成的所有收集和分析数据的新方法的一个综合性名词。概率论是数理统计方法的理论基础,但是它不属于统计学的范畴,而属于数学的范畴。
统计学的发展过程的三个阶段
第一阶段称之为“城邦政情”(Matters of state)阶段
“城邦政情”阶段始于古希腊的亚里斯多德撰写“城邦政情”或“城邦纪要”。他一共撰写了一百五十馀种纪要,其内容包括各城邦的历史,行政,科学,艺术,人口,资源和财富等社会和经济情况的比较,分析,具有社会科学特点。“城邦政情”式的统计研究延续了一两千年,直至十七世纪中叶才逐渐被“政治算数”这个名词所替代,并且很快被演化为“统计学”(Statistics)。统计学依然保留了城邦(state)这个词根。
第二阶段称之为“政治算数”(Politcal arthmetic)阶段
与“城邦政情”阶段没有很明显的分界点,本质的差别也不大。
“政治算数”的特点是统计方法与数学计算和推理方法开始结合。分析社会经济问题的方式更加注重运用定量分析方法。
1690年英国威廉·配弟出版 (政治算数)一书作为这个阶段的起始标志.
威廉·配弟用数字,重量和尺度将社会经济现象数量化的方法是近代统计学的重要特征。因此,威廉?配弟的(政治算数)被后来的学者评价为近代统计学的来源,威廉?配弟本人也被评价为近代统计学之父。
配弟在书中使用的数字有三类:
第一类是对社会经济现象进行统计调查和经验观察得到的数字.因为受历史条件的限制,书中通过严格的统计调查得到的数据少,根据经验得出的数字多;
第二类是运用某种数学方法推算出来的数字。其推算方法可分为三种:
“(1)以已知数或已知量为基础,循著某种具体关系进行推算的方法;
(2)通过运用数字的理论性推理来进行推算的方法;
(3)以平均数为基础进行推算的方法”;
第三类是为了进行理论性推理而采用的例示性的数字.配弟把这种运用数字和符号进行的推理称之为“代数的算法”。从配弟使用数据的方法看,“政治算数”阶段的统计学已经比较明显地体现了“收集和分析数据的科学和艺术”特点,统计实证方法和理论分析方法浑然一体,这种方法即使是现代统计学也依然继承。
第三阶段称之为“统计分析科学”(Science of statistical analysis)阶段
在“政治算数”阶段出现的统计与数学的结合趋势逐渐发展形成了“统计分析科学”。
十九世纪末,欧洲大学开设的“国情纪要”或“政治算数”等课程名称逐渐消失,代之而起的是“统计分析科学”课程.当时的“统计分析科学”课程的内容仍然是分析研究社会经济问题。
“统计分析科学”课程的出现是现代统计发展阶段的开端. 1908年,“学生”氏(William Sleey Gosset的笔名Student)发表了关于t分布的论文,这是一篇在统计学发展史上划时代的文章。它创立了小样本代替大样本的方法,开创了统计学的新纪元。
现代统计学的代表人物首推比利时统计学家奎特莱(Adolphe Quelet),他将统计分析科学广泛应用于社会科学,自然科学和工程技术科学领域,因为他深信统计学是可以用于研究任何科学的一般研究方法.
现代统计学的理论基础概率论始于研究赌博的机遇问题,大约开始于1477年。数学家为了解释支配机遇的一般法则进行了长期的研究,逐渐形成了概率论理论框架。在概率论进一步发展的基础上,到十九世纪初,数学家们逐渐建立了观察误差理论,正态分布理论和最小平方法则。于是,现代统计方法便有了比较坚实的理论基础。

[编辑本段]统计学历史中的学派
一、18-19世纪——统计学的创立和发展
德国的斯勒兹曾说过:“统计是动态的历史,历史是静态的统计。”可见统计学的产生与发展是和生产的发展、社会的进步紧密相联的。
(1)统计学的创立时期
统计学的萌芽产生在欧洲。17世纪中叶至18世纪中叶是统计学的创立时期。在这一时期,统计学理论初步形成了一定的学术派别,主要有国势学派和政治算术学派。
1、国势学派
国势学派又称记述学派,产生于17世纪的德国。由于该学派主要以文字记述国家的显著事项,故称记述学派。其主要代表人物是海尔曼·康令和阿亨华尔。康令第一个在德国黑尔姆斯太特大学以“国势学”为题讲授政治活动家应具备的知识。阿亨华尔在格丁根大学开设“国家学”课程,其主要著作是《近代欧洲各国国势学纲要》,书中讲述“一国或多数国家的显著事项”,主要用对比分析的方法研究了解国家组织、领土、人口、资源财富和国情国力,比较了各国实力的强弱,为德国的君主政体服务。因在外文中“国势”与“统计”词义相通,后来正式命名为“统计学”。该学派在进行国势比较分析中,偏重事物性质的解释,而不注重数量对比和数量计算,但却为统计学的发展奠定了经济理论基础。但随着资本主义市场经济的发展,对事物量的计算和分析显得越来越重要,该学派后来发生了分裂,分化为图表学派和比较学派。
2、政治算术学派
政治算术学派产生于19世纪中叶的英国,创始人是威廉·配第(1623-1687),其代表作是他于1676年完成的《政治算术》一书。这里的“政治”是指政治经济学,“算术”是指统计方法。在这部书中,他利用实际资料,运用数字、重量和尺度等统计方法对英国、法国和荷兰三国的国情国力,作了系统的数量对比分析,从而为统计学的形成和发展奠定了方法论基础。因此马克思说:“威廉·佩第——政治经济学之父,在某种程度上也是统计学的创始人。”
政治算术学派的另一个代表人物是约翰·格朗特(1620-1674)。他以1604年伦敦教会每周一次发表的“死亡公报”为研究资料,在 1662年发表了《关于死亡公报的自然和政治观察》的论著。书中分析了60年来伦敦居民死亡的原因及人口变动的关系,首次提出通过大量观察,可以发现新生儿性别比例具有稳定性和不同死因的比例等人口规律;并且第一次编制了“生命表”,对死亡率与人口寿命作了分析,从而引起了普遍的关注。他的研究清楚地表明了统计学作为国家管理工具的重要作用。
(2)统计学的发展时期
18世纪末至19世纪末是统计学的发展时期。在这时期,各种学派的学术观点已经形成,并且形成了两主要学派,即数理统计学派和社会统计学派。
1、数理统计学派
在18世纪,由于概率理论日益成熟,为统计学的发展奠定了基础。19世纪中叶,把概率论引进统计学而形成数理学派。其奠基人是比利时的阿道夫·凯特勒(1796-1874),其主要著作有:《论人类》、《概率论书简》、《社会制度》和《社会物理学》等。他主张用研究自然科学的方法研究社会现象,正式把古典概率论引进统计学,使统计学进入一个新的发展阶段。由于历史的局限性,凯特勒在研究过程中混淆了自然现象和本质区别,对犯罪、道德等社会问题,用研究自然现象的观点和方法作出一些机械的、庸俗化的解释。但是,他把概率论引入统计学,使统计学在“政治算术”所建立的“算术”方法的基础上,在准确化道路上大大跨进了一步,为数理统计学的形成与发展奠定了基础。
2、社会统计学派
社会统计学派产生于19世纪后半叶,创始人是德国经济学家、统计学家克尼斯(1821-1889),主要代表人物主要有恩格尔(1821- 1896)、梅尔(1841-1925)等人。他们融合了国势学派与政治算术学派的观点,沿着凯特勒的“基本统计理论”向前发展,但在学科性质上认为统计学是一门社会科学,是研究社会现象变动原因和规律性的实质性科学,以此同数理统计学派通用方法相对立。社会统计学派在研究对象上认为统计学是研究体而不是个别现象,而且认为由于社会现象的复杂性和整体性,必须地总体进行大量观察和分析,研究其内在联系,才能揭示现象内在规律。这是社会统计学派的“实质性科学”的显著特点。
社会经济的发展,要求统计学提供更多的统计方法;社会科学本身也不断地向细分化和定量化发展,也要求统计学能提供更有效的调查整理、分析资料的方法。因此,社会统计学派也日益重视方法论的研究,出现了从实质性方法论转化的趋势。但是,社会统计学派仍然强调在统计研究中必须以事物的质为前提和认识事物质的重要性,这同数理统计学派的计量不计质的方法论性质是有本质区别的。
二、20世纪——迅速发展的统计学
20世纪初以来,科学技术迅猛发展,社会发生了巨大变化,统计学进入了快速发展时期。归纳起来有以下几个方面。
1、由记述统计向推断统计发展。记述统计是对所搜集的大量数据资料进行加工整理、综合概括,通过图示、列表和数字,如编制次数分布表、绘制直方图、计算各种特征数等,对资料进行分析和描述。而推断统计,则是在搜集、整理观测的样本数据基础上,对有关总体作出推断。其特点是根据带随机性的观测样本数据以及问题的条件和假定(模型),而对未知事物作出的,以概率形式表述的推断。目前,西方国家所指的科学统计方法,主要就是指推断统计来说的。
2、由社会、经济统计向多分支学科发展。在20世纪以前,统计学的领域主要是人口统计、生命统计、社会统计和经济统计。随着社会、经济和科学技术的发展,到今天,统计的范畴已覆盖了社会生活的一切领域,几乎无所不包,成为通用的方法论科学。它被广泛用于研究社会和自然界的各个方面,并发展成为有着许多分支学科的科学。
3、统计预测和决策科学的发展。传统的统计是对已经发生和正在发生的事物进行统计,提供统计资料和数据。20世纪30年代以来,特别是第二次世界大战以来,由于经济、社会、军事等方面的客观需要,统计预测和统计决策科学有了很大发展,使统计走出了传统的领域而被赋予新的意义和使命。
4、信息论、控制论、系统论与统计学的相互渗透和结合,使统计科学进一步得到发展和日趋完善。信息论、控制论、系统论在许多基本概念、基本思想、基本方法等方面有着共同之处,三者从不同角度、侧面提出了解决共同问题的方法和原则。三论的创立和发展,彻底改变了世界的科学图景和科学家的思维方式,也使统计科学和统计工作从中吸取了营养,拓宽了视野,丰富了内容,出现了新的发展趋势。
5、计算技术和一系列新技术、新方法在统计领域不断得到开发和应用。近几十年间,计算机技术不断发展,使统计数据的搜集、处理、分析、存贮、传递、印制等过程日益现代化,提高了统计工作的效能。计算机技术的发展,日益扩大了传统的和先进的统计技术的应用领域,促使统计科学和统计工作发生了革命性的变化。如今,计算机科学已经成为统计科学不可分割组成部分。随着科学技术的发展,统计理论和实践深度和广度方面也不断发展。
6.统计在现代化管理和社会生活中的地位日益重要。随着社会、经济和科学技术的发展,统计在现代化国家管理和企业管理中的地位,在社会生活中的地位,越来越重要了。人们的日常生活和一切社会生活都离不开统计。英国统计学家哈斯利特说:“统计方法的应用是这样普遍,在我们的生活和习惯中,统计的影响是这样巨大,以致统计的重要性无论怎样强调也不过分。”甚至有的科学有还把我们的时代叫做“统计时代”。显然,20世纪统计科学的发展及其未来,已经被赋予了划时代的意义。
[编辑本段]统计学现状
在科学技术飞速发展的今天,统计学广泛吸收和融合相关学科的新理论,不断开发应用新技术和新方法,深化和丰富了统计学传统领域的理论与方法,并拓展了新的领域。今天的统计学已展现出强有力的生命力。在我国,社会主义市场经济体制的逐步建立,实践发展的需要对统计学提出了新的更多、更高的要求。随着我国社会主义市场经济的成长和不断完善,统计学的潜在功能将得到更充分更完满的开掘。
第一,对系统性及系统复杂性的认识为统计学的未来发展增加了新的思路。由于社会实践广度和深度迅速发展,以及科学技术的高度发展,人们对客观世界的系统性及系统的复杂性认识也更加全面和深入。随着科学融合趋势的兴起,统计学的研究触角已经向新的领域延伸,新兴起了探索性数据的统计方法的研究。研究的领域向复杂客观现象扩展。21世纪统计学研究的重点将由确定性现象和随机现象转移到对复杂现象的研究。如模糊现象、突变现象及混沌现象等新的领域。可以这样说,复杂现象的研究给统计开辟了新的研究领域。
第二,定性与定量相结合的综合集成法将为统计分析方法的发展提供新的思想。定性与定量相结合的综合集成方法是钱学森教授于1990年提出的。这一方法的实质就是将科学理论、经验知识和专家判断相结合,提出经验性的假设,再用经验数据和资料以及模型对它的确实性进行检测,经过定量计算及反复对比,最后形成结论。它是研究复杂系统的有效手段,而且在问题的研究过程中处处渗透着统计思想,为统计分析方法的发展提供了新的思维方式。
第三,统计科学与其他科学渗透将为统计学的应用开辟新的领域。现代科学发展已经出现了整体化趋势,各门学科不断融合,已经形成一个相互联系的统一整体。由于事物之间具有的相互联系性,各学科之间研究方法的渗透和转移已成为现代科学发展的一大趋势。许多学科取得的新的进展为其他学科发展提供了全新的发展机遇。模糊论、突变论及其他新的边缘学科的出现为统计学的进一步发展提供了新的科学方法和思想。将一些尖端科学成果引入统计学,使统计学与其交互发展将成为未来统计学发展的趋势。统计学也将会有一个令人振奋的前景。今天已经有一些先驱者开始将控制论、信息论、系统论以及图论、混沌理论、模糊理论等方法和理论引入统计学,这些新的理论和方法的渗透必将会给统计学的发展产生深远的影响。
统计学产生于应用,在应用过程中发展壮大。随着经济社会的发展、各学科相互融合趋势的发展和计算机技术的迅速发展,统计学的应用领域、统计理论与分析方法也将不断发展,在所有领域展现它的生命力和重要作用。
[编辑本段]学科分支
一些学科大量地利用了应用统计学,以至它们自己已经各自独立成为一门学科。
温馨提示:内容为网友见解,仅供参考
第1个回答  2016-08-29
第一节 统计的产生与发展
1.统计—总括地计算;对某一现象有关的数据进行搜集、整理、计算和分析等;统计学 概括地说统计就是用数字作为语言表述事实。它有三层含义即:统计资料、统计工作、统计学
2统计资料是反映一定社会经济现象或科学技术内容的统计数字和相联系的文字分析报告。 3统计工作是在一定理论指导下,采用适宜的科学方法搜集、处理统计资料的一系列调查研究过程。
3统计学是研究如何测定、收集、整理、归纳和分析反映客观现象总体数量的数据,以便给出正确认识的方法论科学。其目的就是探索数据内在的数量规律性(为什么?)。P8
三者之间的关系:统计工作和统计资料是过程与成果的关系;统计工作和统计学是实践与理论的关系,理论源于实践,理论又高于实践,反过来又指导实践。统计学是统计工作的经验概括和总结,是系统化了的知识体系。
第二节 统计的基本问题
1.统计的作用 认识世界的有力武器 是治国和管理的重要手段 是科学研究的有效工具P4
2.统计的特点 数量性 总体性(综合性) 具体性
3.统计工作过程 统计设计→统计调查→统计整理→统计分析
4、统计设计就是根据统计活动的目的,结合研究对象的性质、特点,对统计范围、统计指标、分类目录、资料搜集整理方法、分析要求及有关组织工作等方面所作出的整体规划。
5、统计调查就是根据统计活动的目的所确定的统计指标,把研究对象中各总体单位的某些必须了解的特征记录下来。
6、统计整理就是根据统计设计的要求,将调查资料进行审核、分组、汇总、编制统计表等科学加工处理的过程,以便清晰地反映研究总体的综合特征。
7、统计分析就是根据统计研究的任务,以统计数据为基础,结合具体情况,运用静态和动态分析方法进行研究,肯定成绩,发现问题,找出原因,根据事物的本质及其规律性,提出解决问题的方法,更好地为社会主义现代化建设服务。
第三节 统计学的若干基本概念
1、总体:指在某种共性的基础上由许多个别事物结合起来的整体。简言之总体是同质个体所组成的整体。三大特点: ①同质性 (共性)②大量性 ③差异性
总体可分为两大类:
①有限总体:指总体单位数有限而可以计数的总体(如全国人口普查)
②无限总体:指总体单位数无限不可以计数的总体(如在检验某种新工艺是否真正能够改善产品的性能的问题中)
2、总体单位:就是构成总体的个别事物,称为总体单位。简称单位。
3、总体与总体单位关系: 总体和总体单位都是客观存在的事物,是统计研究的客体。都是根据统计研究的目的确定的。 总体和单位是相对而言的,随着研究目的的不同、总体范围不同而变化。同一个研究对象,在一种情况下为总体,但在另一种情况又可能变成单位。 4样本 从总体中抽取出一部分单位,作为代表这一总体的部分单位组成的集合体称为样本(或子样)。样本所包含的总体单位数被称为样本容量。其特点:样本的单位必须取自总体内部,不许总体外部单位参加。 从一个总体可以抽取多个样本。 样本的代表性和客观性。 5标志 是说明总体单位特征的名称由标志名称+标志值组成。
标志的分类 :品质标志:说明总体单位属性方面的特征 ,其表现只能用文字、语言来描述。 数量标志 :说明总体单位数量方面的特征,需用数值来表现。 不变标志 :无本回答被网友采纳
第2个回答  2008-12-12
http://baike.baidu.com/view/605645.htm
http://baike.baidu.com/view/908156.htm
抽样平均误差是测定抽样误差的基本指标。它是随机抽样可变总体平均数(抽样平均数的所有可能值)与全及平均数之间离差...这个指标反映抽样平均数的所有可能值对全及平均数的平均离散程度,即反映误差平均值的大小
分布数列是统计整理的一种重要形式,是统计描述和统计分析的一种重要方法,它可以说明总体的分布特征、内部结构,并可据以研究总体某一标志值的平均水平及其变动的规律性。
http://baike.baidu.com/view/553028.htm
第3个回答  2008-12-14
你是考什么方面的统计学?
第4个回答  2008-12-13
抽样平均误差是测定抽样误差的基本指标。它是随机抽样可变总体平均数(抽样平均数的所有可能值)与全及平均数之间离差...这个指标反映抽样平均数的所有可能值对全及平均数的平均离散程度,即反映误差平均值的大小
分布数列是统计整理的一种重要形式,是统计描述和统计分析的一种重要方法,它可以说明总体的分布特征、内部结构,并可据以研究总体某一标志值的平均水平及其变动的规律性。
1、统计学:是运用数理统计的基本原理和方法研究预防医学和卫生事业管理中资料的收集,整理和分析的一门应用科学。具体地讲,是按照设计方案去收集、整理、分析数据,并对数据结果进行解释,从而做出比较正确的结论。

2、总体:是根据研究目的确定同质的所有观察单位某种变量的集合。

3、变异:同一性质的事物,其观察值(变量值)之间的差异。

4、抽样研究:从所研究的总体中随机抽取一部分有代表性的样本进行研究,用样本指标推论总体,最终达到了解总体的目的。这种用样本指标推论总体参数的方法称为抽样研究。

5、统计描述:用统计图表或计算统计指标的方法表达一个特定群体的某种现象或特征。

6、统计推断:根据样本资料的特性对总体的特性作估计或推论的方法称统计推断,常用方法是参数估计和假设检验。

7、概率:是指某事件出现可能性大小的度量,以符号P表示。

8、医学参考值范围:参考值范围又称正常值范围。医学上常把包括绝大多数人某项指标的数值范围称为该指标的参考值范围。

9、正态分布规律:实际工作中,经常需要了解正态曲线下横轴上的一定区域的面积占总面积的百分数,用以估计该区间的观察例数占总例数的百分数,或变量值落在该区间的频数或概率。

10、可比性:是指对研究结果有影响的非处理因素在各处理组之间尽可能相 同或相近。

11、动态数列:是一系列按时间顺序排列起来的统计指标,包括绝对数、相对数或平均数,用以说明事物在时间上的变化和发展趋势。

12、抽样误差:在同一总体中随机抽取样本含量相同的若干样本时,样本指标之间的差异以及样本指标与总体指标的差异。

13、标准误:表示样本均数间变异程度。

14、率的抽样误差:抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差,率之间的差异称为率的抽样误差。

15、参数估计:是指用样本指标(称为统计量)估计总体指标(称为参数)。

16、可信区间:总体参数的所在范围通常称为参数的可信区间或置信区间,即该区间以一定的概率(如95%或99%)包含总体参数。

17、I型错误:拒绝了实际撒谎能够成立的H0,这类“弃真”的错误称为I型错误。

18、II型错误:接受了实际撒谎能够不成立的H0,这类“存伪”的错误称为II型错误。

19、检验效能:1-b称为检验效能又称为把握度。它的含义是:当两总体确实有差别时,按规定的检验水准a,能够发现两总体间差别的能力。

20、四格表资料:两个样本率的资料又称为四格表资料,在四格表资料中两个样本的实际发生频数和实际未发生频数为基本数据,其他数据均可由这四个基本数据推算出来。

21、列联表资料:对同一样本资料按其两个无序分类变量(行变量和列变量)归纳成双向交叉排列的统计表,其行变量可分为R类,列变量可分为C类,这种表称为R*C列联表。

22、参数检验:是一种要求样本来自总体分布型是已知的(如正态分布),在这种假设的基础上,对总体参数(如总体均数)进行统计推断的假设检验。

23、非参数检验:是一种不依赖总体分布类型,也不对总体参数(如总体均数)进行统计推断的假设检验。

24、秩次:即通常意义上的序号,实际上就是将观察值按顺序由小到大排列,并用序号代替了变量值本身。

25、直线相关系数:它是说明具有直线关系的两个变量间,相关关系的密切程度与相关方向的统计指标。相关系数没有单位,取值范围是-1〈=r〈=1,r的绝对值越大表明两变量的关系越密切。

26、完全负相关:这是一种极为特殊的负相关关系,从散点图上可以看出,由x与y构成的散点完全分布在一条直线上,x增加,y相应减少,算得的相关系数r=-1。

27、正相关:它是说明具有直线关系的两个变量间,存在有正的相关方向,即当x增加时,y有相应增大的趋势,所算得的相关系数r为正值。

28、等级相关:是对等级数据作相关分析,它又称为秩相关,是一种非参数统计方法。

29、评价:是通过对某些标准来判断观测结果,并赋予这种结果以一定的意义和价值的过程。

30、综合评价:是指人们根据不同的评价目的,选择相应的评价形式,据此选择多个因素或指标,并通过一定的数学模型,将多个评价因素或指标转化为能反映评价对象总体特征的信息。

31、优序法:为了比较某几个事物或方案的优劣,在选定各项评价指标后,将待评价的对象或方案就各项评价指标的测量值大小分别排列,并分别对各序号(等级)以相应的评分值即优序数,然后综合诸评价指标,分别计算评价对象的总赋优序数,并按总赋优序大小评定其优顺序的方法即优序法。

32、Topsis:Topsis法常用于系统工程中有限方案多目标决策分析,此外,也可用于效益评价、卫生决策和卫生事业管理等多领域。

33、根本死因:WHO规定,根本死因是指:“(a)引起直接导致死亡的一系列病态事件的那些疾病或损伤,或者(b)造成致命损伤的事故或暴力的情况。”

34、卫生服务需要:是指人们因疾病影响健康,引起人体正常活动的障碍,实际应当接受各种卫生服务的需要(如预防保健、治疗、康复)。

35、卫生服务调查统计:是卫生统计的主要内容之一,卫生服务调查统计是从卫生服务资料的设计、收集、整理、分析的角度,来阐述卫生服务研究的特点、研究方法和注意事项,以便使卫生服务研究服务更具有科学性。

36、卫生服务调查:是指对卫生服务状况、人群健康的危险因素、人群卫生服务的需求和利用、卫生服务资源的分配和利用所进行的一种社会调查。

37、统计表:是以表格的形式列出统计指标,它是对资料进行统计描述时的一种常用手段。

38、统计图:是以各种几何图形(如点、线、面或立体)显示数据的大小、升降、分布以及关系等,它也是对资料进行统计描述时的一种常用手段。

39、均数的抽样误差:统计学上,对于抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差。

参考资料:http://baike.baidu.com/view/605645.htm http://baike.baidu.com/view/553028.htm

本回答被提问者采纳

统计学常考的名词解释和简答有哪些
1、统计学:是运用数理统计的基本原理和方法研究预防医学和卫生事业管理中资料的收集,整理和分析的一门应用科学。具体地讲,是按照设计方案去收集、整理、分析数据,并对数据结果进行解释,从而做出比较正确的结论。 2、总体:是根据研究目的确定同质的所有观察单位某种变量的集合。 3、变异:同一性质的事物,其观察值(变量...

统计学常考的名词解释和简答有哪些
1.统计—总括地计算;对某一现象有关的数据进行搜集、整理、计算和分析等;统计学 概括地说统计就是用数字作为语言表述事实。它有三层含义即:统计资料、统计工作、统计学 2统计资料是反映一定社会经济现象或科学技术内容的统计数字和相联系的文字分析报告。 3统计工作是在一定理论指导下,采用适宜的科学方...

统计学几个名词解释
标准偏差(Std Dev,Standard Deviation) -统计学名词。一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。标准偏差公式:S = Sqr(∑(xn-x拨)^2 \/(n-1))公式中∑...

统计学几个名词解释
总体是指研究对象的全体,它是统计学的基石。而样本则是从总体中选取的一部分观察对象。统计学通过分析样本数据来推断总体的特征和规律。例如,为了研究全国人口的平均身高,可能会选择部分城市或地区的居民作为样本进行调查,然后根据样本数据来估计全国人口的平均身高。2. 参数与统计量 参数是描述总体特征的...

统计学名词解释
1、统计学:是应用概率论和数理统计的基本原理和方法,研究数据的收集、整理、分析、表达和解释的一门科学。2、医学统计学:是应用统计学的基本原理和方法,研究医学及其有关领域数据信息的搜集 整理、分析、表达和解释的一门科学。3、抽样:是从研那个研究总体抽取少量有代表性的个体,称为抽样。4、...

求 统计学 名词解释和简答 帮助
设g (θ) 为可估参数,如果T ( X) 是g (θ) 的无偏估计,且对Ug 中任一个估计φ( X) ,有V arθ( T ( X) ) ≤V arθ(φ( X) ) Pθ∈Θ 则称为T ( X) 为g (θ) 的一致最小方差无偏估计(Uniformly Minimum Variance Unbiased Estimate) ,简记为UMVUE 我只知道这个 ...

医学统计学名词解释及问答题
详情请查看视频回答

统计学名词解释;
1.众数(Mode)将数据按从大到小顺序排列后,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个)。2.中位数(Median)将数据排序后,位置在最中间的数值。即将数据分成两部分,一部分大于该数值,一部分小于该数值。中位数的位置:当样本数为奇数时,(N+1)\/2;...

统计学原理名词解释
1)统计学:是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化 的分析、总结,并进而进行推断和预测,为相关决策提供依据和参考 2)相关名词解释 1、统计:从数量方面认识事物的特征及规律的科学方法,有3层含义,及统计工作、统计资料、统计学。2、统计总体:根据...

统计名词解释
统计的解释:大量数据的收集、分析、解释和表述人口统计 统计学 从总体中抽取的一部分数据集合,以作为总体的代表。总体:需要研究或者了解的全部个体或者对象的集合。统计指标:对数据进行标识和度量的标志性数量,如平均数、中位数和方差等等。频数:某一数值在样本或者总体中出现的次数。概率:在某个特定...

相似回答