天文台上现在还有没有供游客亲自观察天象的天文望远镜?

有人说有,有人说没有,是哪个啊?

天文台是专业科研机构,平时是不对外开放的,你说的那种地方应该叫做天文馆,是搞科普的地方,天文馆里当然提供望远镜给游客看,比如北京天文馆,至于有的天文台提供望远镜,也是给人搞研究用的,而不是给游客用的。
温馨提示:内容为网友见解,仅供参考
第1个回答  2008-10-01
天文台是专业科研机构,平时是不对外开放的,你说的那种地方应该叫做天文馆,是搞科普的地方,天文馆里当然提供望远镜给游客看,比如北京天文馆,至于有的天文台提供望远镜,也是给人搞研究用的,而不是给游客用的。 天文台是专业的科研机构。平时一般不对外开放,即使开放也是定期规定的时间,可以注意天文台的相关通知
第2个回答  2008-10-01
NZ one tree hill上的天文台有,不过要多付钱才能用
第3个回答  2008-10-01
天文台是专业的科研机构。平时一般不对外开放,即使开放也是定期规定的时间,可以注意天文台的相关通知。
第4个回答  2008-10-07
折射式望远镜
1608年,荷兰眼镜商人李波尔赛偶然发现用两块镜片可以看清远处的景物,受此启发,他制造了人类历史第一架望远镜。
1609年,伽利略制作了一架口径4.2厘米,长约1.2米的望远镜。他是用平凸透镜作为物镜,凹透镜作为目镜,这种光学系统称为伽利略式望远镜。伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。
1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。
需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,这势必会造成镜身的加长。所以在很长的一段时间内,天文学家一直在梦想制作更长的望远镜,许多尝试均以失败告终。
1757年,杜隆通过研究玻璃和水的折射和色散,建立了消色差透镜的理论基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。从此,消色差折射望远镜完全取代了长镜身望远镜。但是,由于技术方面的限制,很难铸造较大的火石玻璃,在消色差望远镜的初期,最多只能磨制出10厘米的透镜。
十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮。世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。
折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,最适合于做天体测量方面的工作。但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害。而巨大的光学玻璃浇制也十分困难,到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。
编辑本段反射式望远镜
第一架反射式望远镜诞生于1668年。牛顿经过多次磨制非球面的透镜均告失败后,决定采用球面反射镜作为主镜。他用2.5厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45o角的反射镜,使经主镜反射后的会聚光经反射镜以90o角反射出镜筒后到达目镜。这种系统称为牛顿式反射望远镜。它的球面镜虽然会产生一定的象差,但用反射镜代替折射镜却是一个巨大的成功。
詹姆斯·格雷戈里在1663年提出一种方案:利用一面主镜,一面副镜,它们均为凹面镜,副镜置于主镜的焦点之外,并在主镜的中央留有小孔,使光线经主镜和副镜两次反射后从小孔中射出,到达目镜。这种设计的目的是要同时消除球差和色差,这就需要一个抛物面的主镜和一个椭球面的副镜,这在理论上是正确的,但当时的制造水平却无法达到这种要求,所以格雷戈里无法得到对他有用的镜子。
1672年,法国人卡塞格林提出了反射式望远镜的第三种设计方案,结构与格雷戈里望远镜相似,不同的是副镜提前到主镜焦点之前,并为凸面镜,这就是现在最常用的卡赛格林式反射望远镜。这样使经副镜镜反射的光稍有些发散,降低了放大率,但是它消除了球差,这样制作望远镜还可以使焦距很短。
卡塞格林式望远镜的主镜和副镜可以有多种不同的形式,光学性能也有所差异。由于卡塞格林式望远镜焦距长而镜身短,放大倍率也大,所得图象清晰;既有卡塞格林焦点,可用来研究小视场内的天体,又可配置牛顿焦点,用以拍摄大面积的天体。因此,卡塞格林式望远镜得到了非常广泛的应用。
赫歇尔是制作反射式望远镜的大师,他早年为音乐师,因为爱好天文,从1773年开始磨制望远镜,一生中制作的望远镜达数百架。赫歇尔制作的望远镜是把物镜斜放在镜筒中,它使平行光经反射后汇聚于镜筒的一侧。
在反射式望远镜发明后的近200年中,反射材料一直是其发展的障碍:铸镜用的青铜易于腐蚀,不得不定期抛光,需要耗费大量财力和时间,而耐腐蚀性好的金属,比青铜密度高且十分昂贵。1856年德国化学家尤斯图斯·冯·利比希研究出一种方法,能在玻璃上涂一薄层银,经轻轻的抛光后,可以高效率地反射光。这样,就使得制造更好、更大的反射式望远镜成为可能。
1918年末,口径为254厘米的胡克望远镜投入使用,这是由海尔主持建造的。天文学家用这架望远镜第一次揭示了银河系的真实大小和我们在其中所处的位置,更为重要的是,哈勃的宇宙膨胀理论就是用胡克望远镜观测的结果。
二十世纪二、三十年代,胡克望远镜的成功激发了天文学家建造更大反射式望远镜的热情。1948年,美国建造了口径为508厘米望远镜,为了纪念卓越的望远镜制造大师海尔,将它命名为海尔望远镜。从设计到制造完成海尔望远镜经历了二十多年,尽管它比胡克望远镜看得更远,分辨能力更强,但它并没有使人类对宇宙的有更新的认识。正如阿西摩夫所说:"海尔望远镜(1948年)就象半个世纪以前的叶凯士望远镜(1897年)一样,似乎预兆着一种特定类型的望远镜已经快发展到它的尽头了"。在1976 年前苏联建造了一架600厘米的望远镜,但它发挥的作用还不如海尔望远镜,这也印证了阿西摩夫所说的话。
反射式望远镜有许多优点,比如:没有色差,能在广泛的可见光范围内记录天体发出的信息,且相对于折射望远镜比较容易制作。但由于它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等。
编辑本段折反射式望远镜
折反射式望远镜最早出现于1814年。1931年,德国光学家施密特用一块别具一格的接近于平行板的非球面薄透镜作为改正镜,与球面反射镜配合,制成了可以消除球差和轴外象差的施密特式折反射望远镜,这种望远镜光力强、视场大、象差小,适合于拍摄大面积的天区照片,尤其是对暗弱星云的拍照效果非常突出。施密特望远镜已经成了天文观测的重要工具。
1940年马克苏托夫用一个弯月形状透镜作为改正透镜,制造出另一种类型的折反射望远镜,它的两个表面是两个曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均为球面,比施密特式望远镜的改正板容易磨制,镜筒也比较短,但视场比施密特式望远镜小,对玻璃的要求也高一些。
由于折反射式望远镜能兼顾折射和反射两种望远镜的优点,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱。
望远镜的集光能力随着口径的增大而增强,望远镜的集光能力越强,就能够看到更暗更远的天体,这其实就是能够看到了更早期的宇宙。天体物理的发展需要更大口径的望远镜。
但是,随着望远镜口径的增大,一系列的技术问题接踵而来。海尔望远镜的镜头自重达14.5吨,可动部分的重量为530吨,而6米镜更是重达800吨。望远镜的自重引起的镜头变形相当可观,温度的不均匀使镜面产生畸变也影响了成象质量。从制造方面看,传统方法制造望远镜的费用几乎与口径的平方或立方成正比,所以制造更大口径的望远镜必须另辟新径。
自七十年代以来,在望远镜的制造方面发展了许多新技术,涉及光学、力学、计算机、自动控制和精密机械等领域。这些技术使望远镜的制造突破了镜面口径的局限,并且降低造价和简化望远镜结构。特别是主动光学技术的出现和应用,使望远镜的设计思想有了一个飞跃。
从八十年代开始,国际上掀起了制造新一代大型望远镜的热潮。其中,欧洲南方天文台的VLT,美、英、加合作的GEMINI,日本的SUBARU的主镜采用了薄镜面;美国的Keck I、Keck II和HET望远镜的主镜采用了拼接技术。
优秀的传统望远镜卡塞格林焦点在最好的工作状态下,可以将80%的几何光能集中在0〃.6范围内,而采用新技术制造的新一代大型望远镜可保持80%的光能集中在0〃.2~0〃.4,甚至更好。
下面对几个有代表性的大型望远镜分别作一些介绍:
凯克望远镜(Keck I,Keck II)
Keck I 和Keck II分别在1991年和1996年建成,这是当前世界上已投入工作的最大口径的光学望远镜,因其经费主要由企业家凯克(Keck W M)捐赠(Keck I 为9400万美元,Keck II为7460万美元)而命名。这两台完全相同的望远镜都放置在夏威夷的莫纳克亚,将它们放在一起是为了做干涉观测。
它们的口径都是10米,由36块六角镜面拼接组成,每块镜面口径均为1.8米,而厚度仅为10厘米,通过主动光学支撑系统,使镜面保持极高的精度。焦面设备有三个:近红外照相机、高分辨率CCD探测器和高色散光谱仪。
"象Keck这样的大望远镜,可以让我们沿着时间的长河,探寻宇宙的起源,Keck更是可以让我们看到宇宙最初诞生的时刻"。
欧洲南方天文台甚大望远镜(VLT)
欧洲南方天文台自1986年开始研制由4台8米口径望远镜组成一台等效口径为16米的光学望远镜。这4台8米望远镜排列在一条直线上,它们均为RC光学系统,焦比是F/2,采用地平装置,主镜采用主动光学系统支撑,指向精度为1〃,跟踪精度为0.05〃,镜筒重量为100吨,叉臂重量不到120吨。这4台望远镜可以组成一个干涉阵,做两两干涉观测,也可以单独使用每一台望远镜。
现在已完成了其中的两台,预计于2000年可全部完成。
双子望远镜(GEMINI)
双子望远镜是以美国为主的一项国际设备(其中,美国占50%,英国占25%,加拿大占15%,智利占5%,阿根廷占2.5%,巴西占2.5%),由美国大学天文联盟(AURA)负责实施。它由两个8米望远镜组成,一个放在北半球,一个放在南半球,以进行全天系统观测。其主镜采用主动光学控制,副镜作倾斜镜快速改正,还将通过自适应光学系统使红外区接近衍射极限。
该工程于1993年9月开始启动,第一台在1998年7月在夏威夷开光,第二台于2000年9月在智利赛拉帕琼台址开光,整个系统预计在2001年验收后正式投入使用。
昴星团(日本)8米望远镜(SUBARU)
这是一台8米口径的光学/红外望远镜。它有三个特点:一是镜面薄,通过主动光学和自适应光学获得较高的成象质量;二是可实现0.1〃的高精度跟踪;三是采用圆柱形观测室,自动控制通风和空气过滤器,使热湍流的排除达到最佳条件。此望远镜采用Serrurier桁架,可使主镜框与副镜框在移动中保持平行。
此望远镜将安装在夏威夷的莫纳克亚,从1991年开始,预计9年完成。
大天区多目标光纤光谱望远镜(LAMOST)
这是我国正在兴建中的一架有效通光口径为4米、焦距为20米、视场达20平方度的中星仪式的反射施密特望远镜。它的技术特色是:
1. 把主动光学技术应用在反射施密特系统,在跟踪天体运动中作实时球差改正,实现大口径和大视场兼备的功能。
2. 球面主镜和反射镜均采用拼接技术。
3. 多目标光纤(可达4000根,一般望远镜只有600根)的光谱技术将是一个重要突破。
LAMOST把普测的星系极限星等推到20.5m,比SDSS计划高2等左右,实现107个星系的光谱普测,把观测目标的数量提高1个量级。
1932年央斯基(Jansky. K. G)用无线电天线探测到来自银河系中心(人马座方向)的射电辐射,这标志着人类打开了在传统光学波段之外进行观测的第一个窗口。
第二次世界大战结束后,射电天文学脱颖而出,射电望远镜为射电天文学的发展起了关键的作用,比如:六十年代天文学的四大发现,类星体,脉冲星,星际分子和宇宙微波背景辐射,都是用射电望远镜观测得到的。射电望远镜的每一次长足的进步都会毫无例外地为射电天文学的发展树立一个里程碑。
英国曼彻斯特大学于1946年建造了直径为66.5米的固定式抛物面射电望远镜,1955年又建成了当时世界上最大的可转动抛物面射电望远镜;
六十年代,美国在波多黎各阿雷西博镇建造了直径达305米的抛物面射电望远镜,它是顺着山坡固定在地表面上的,不能转动,这是世界上最大的单孔径射电望远镜。
1962年,Ryle发明了综合孔径射电望远镜,他也因此获得了1974年诺贝尔物理学奖。综合孔径射电望远镜实现了由多个较小天线结构获得相当于大口径单天线所能取得的效果。
1967年Broten等人第一次记录到了VLBI干涉条纹。
七十年代,联邦德国在波恩附近建造了100米直径的全向转动抛物面射电望远镜,这是世界上最大的可转动单天线射电望远镜。
八十年代以来,欧洲的VLBI网(EVN),美国的VLBA阵,日本的空间VLBI(VSOP)相继投入使用,这是新一代射电望远镜的代表,它们在灵敏度、分辨率和观测波段上都大大超过了以往的望远镜。
中国科学院上海天文台和乌鲁木齐天文站的两架25米射电望远镜作为正式成员参加了美国的地球自转连续观测计划(CORE)和欧洲的甚长基线干涉网(EVN),这两个计划分别用于地球自转和高精度天体测量研究(CORE)和天体物理研究(EVN)。这种由各国射电望远镜联合进行长基线干涉观测的方式,起到了任何一个国家单独使用大望远镜都不能达到的效果。
另外,美国国立四大天文台(NARO)研制的100米单天线望远镜(GBT),采用无遮挡(偏馈),主动光学等设计,该天线目前正在安装中,2000年有可能投入使用。
国际上将联合发展接收面积为1平方公里的低频射电望远镜阵(SKA),该计划将使低频射电观测的灵敏度约有两个量级的提高,有关各国正在进行各种预研究。
在增加射电观测波段覆盖方面,美国史密松天体物理天文台和中国台湾天文与天体物理研究院正在夏威夷建造国际上第一个亚毫米波干涉阵(SMA),它由8个6米的天线组成,工作频率从190GHz到85z,部分设备已经安装。美国的毫米波阵(MMA)和欧洲的大南天阵(LAS)将合并成为一个新的毫米波阵计划――ALMA。这个计划将有64个12米天线组成,最长基线达到10公里以上,工作频率从70到950GHz,放在智利的Atacama附近,如果合并顺利,将在2001年开始建造,日本方面也在考虑参加该计划的可能性。
在提高射电观测的角分辨率方面,新一代的大型设备大多数考虑干涉阵的方案;为了进一步提高空间VLBI观测的角分辨率和灵敏度,第二代空间VLBI计划――ARISE(25米口径)已经提出。
相信这些设备的建成并投入使用将会使射电天文成为天文学的重要研究手段,并会为天文学发展带来难以预料的机会。
我们知道,在地球表面有一层浓厚的大气,由于地球大气中各种粒子与天体辐射的相互作用(主要是吸收和反射),使得大部分波段范围内的天体辐射无法到达地面。人们把能到达地面的波段形象地称为"大气窗口",这种"窗口"有三个。
光学窗口:这是最重要的一个窗口,波长在300~700纳米之间,包括了可见光波段(400~700纳米),光学望远镜一直是地面天文观测的主要工具。
红外窗口:红外波段的范围在0.7~1000微米之间,由于地球大气中不同分子吸收红外线波长不一致,造成红外波段的情况比较复杂。对于天文研究常用的有七个红外窗口。
射电窗口:射电波段是指波长大于1毫米的电磁波。大气对射电波段也有少量的吸收,但在40毫米~30米的范围内大气几乎是完全透明的,我们一般把1毫米~30米的范围称为射电窗口。
大气对于其它波段,比如紫外线、X射线、γ射线等均为不透明的,在人造卫星上天后才实现这些波段的天文观测。
编辑本段红外望远镜
最早的红外观测可以追溯到十八世纪末。但是,由于地球大气的吸收和散射造成在地面进行的红外观测只局限于几个近红外窗口,要获得更多红外波段的信息,就必须进行空间红外观测。现代的红外天文观测兴盛于十九世纪六、七十年代,当时是采用高空气球和飞机运载的红外望远镜或探测器进行观测。
1983年1月23日由美英荷联合发射了第一颗红外天文卫星IRAS。其主体是一个口径为57厘米的望远镜,主要从事巡天工作。IRAS的成功极大地推动了红外天文在各个层次的发展。直到现在,IRAS的观测源仍然是天文学家研究的热点目标。
1995年11月17日由欧洲、美国和日本合作的红外空间天文台(ISO)发射升空并进入预定轨道。ISO的主体是一个口径为60厘米的R-C式望远镜,它的功能和性能均比IRAS有许多提高,它携带了四台观测仪器,分别实现成象、偏振、分光、光栅分光、F-P干涉分光、测光等功能。与IRAS相比,ISO从近红外到远红外,更宽的波段范围;有更高的空间分辨率;更高的灵敏度(约为IRAS的100倍);以及更多的功能。
ISO的实际工作寿命为30个月,对目标进行定点观测(IRAS的观测是巡天观测),这能有的放矢地解决天文学家提出的问题。预计在今后的几年中,以ISO数据为基础的研究将会成为天文学的热点之一。
从太阳系到宇宙大尺度红外望远镜与光学望远镜有许多相同或相似之处,因此可以对地面的光学望远镜进行一些改装,使它能同时也可从事红外观测。这样就可以用这些望远镜在月夜或白天进行红外观测,更大地发挥观测设备的效率。
编辑本段紫外望远镜
紫外波段是介于X射线和可见光之间的频率范围,观测波段为3100~100埃。紫外观测要放在150公里的高度才能进行,以避开臭氧层和大气的吸收。第一次紫外观测是用气球将望远镜载上高空,以后用了火箭,航天飞机和卫星等空间技术才使紫外观测有了真正的发展。
紫外波段的观测在天体物理上有重要的意义。紫外波段是介于X射线和可见光之间的频率范围,在历史上紫外和可见光的划分界限在3900埃,当时的划分标准是肉眼能否看到。现代紫外天文学的观测波段为3100~100埃,和X射线相接,这是因为臭氧层对电磁波的吸收界限在这里。
1968年美国发射了OAO-2,之后欧洲也发射了TD-1A,它们的任务是对天空的紫外辐射作一般性的普查观测。被命名为哥白尼号的OAO-3于1972年发射升空,它携带了一架0.8米的紫外望远镜,正常运行了9年,观测了天体的950~3500埃的紫外谱。
1978年发射了国际紫外探测者(IUE),虽然其望远镜的口径比哥白尼号小,但检测灵敏度有了极大的提高。IUE的观测数据成为重要的天体物理研究资源。
1990年12月2~11日,哥伦比亚号航天飞机搭载Astro-1天文台作了空间实验室第一次紫外光谱上的天文观测;1995年3月2日开始,Astro-2天文台完成了为期16天的紫外天文观测。
1992年美国宇航局发射了一颗观测卫星――极远紫外探索卫星(EUVE),是在极远紫外波段作巡天观测。
1999年6月24日FUSE卫星发射升空,这是NASA的"起源计划"项目之一,其任务是要回答天文学有关宇宙演化的基本问题。
紫外天文学是全波段天文学的重要组成部分,自哥白尼号升空至今的30年中,已经发展了紫外波段的EUV(极端紫外)、FUV(远紫外)、UV(紫外)等多种探测卫星,覆盖了全部紫外波段。
X射线望远镜:
X射线辐射的波段范围是0.01-10纳米,其中波长较短(能量较高)的称为硬X射线,波长较长的称为软X射线。天体的X射线是根本无法到达地面的,因此只有在六十年代人造地球卫星上天后,天文学家才获得了重要的观测成果,X射线天文学才发展起来。早期主要是对太阳的X射线进行观测。
1962年6月,美国麻省理工学院的研究小组第一次发现来自天蝎座方向的强大X射线源,这使非太阳X射线天文学进入了较快的发展阶段。七十年代,高能天文台1号、2号两颗卫星发射成功,首次进行了X射线波段的巡天观测,使X射线的观测研究向前迈进了一大步,形成对X射线观测的热潮。进入八十年代以来,各国相继发射卫星,对X射线波段进行研究:
1987年4月,由前苏联的火箭将德国、英国、前苏联、及荷兰等国家研制的X射线探测器送入太空;
1987年日本的X射线探测卫星GINGA发射升空;
1989年前苏联发射了一颗高能天体物理实验卫星――GRANAT,它载有前苏联、法国、保加利亚和丹麦等国研制的7台探测仪器,主要工作为成象、光谱和对爆发现象的观测与监测;
1990年6月,伦琴X射线天文卫星(简称ROSAT)进入地球轨道,为研究工作取得大批重要的观测资料,到现在它已基本完成预定的观测任务;
1990年12月"哥伦比亚"号航天飞机将美国的"宽带X射线望远镜"带入太空进行了为期9天的观测;
1993年2月,日本的"飞鸟"X射线探测卫星由火箭送入轨道;
1996年美国发射了"X射线光度探测卫星"(XTE),
1999年7月23日美国成功发射了高等X射线天体物理设备(CHANDRA)中的一颗卫星,另一颗将在2000年发射;
1999年12月13日欧洲共同体宇航局发射了一颗名为XMM的卫星。
2000年日本也将发射一颗X射线的观测设备。
以上这些项目和计划表明,未来几年将会是一个X射线观测和研究的高潮。
γ射线望远镜:
γ射线比硬X射线的波长更短,能量更高,由于地球大气的吸收,γ射线天文观测只能通过高空气球和人造卫星搭载的仪器进行。
1991年,美国的康普顿(γ射线)空间天文台(Compton GRO或CGRO)由航天飞机送入地球轨道。它的主要任务是进行γ波段的首次巡天观测,同时也对较强的宇宙γ射线源进行高灵敏度、高分辨率的成象、能谱测量和光变测量,取得了许多有重大科学价值的结果。
CGRO配备了4台仪器,它们在规模和性能上都比以往的探测设备有量级上的提高,这些设备的研制成功为高能天体物理学的研究带来了深刻的变化,也标志着γ射线天文学开始逐渐进入成熟阶段。CGRO携带的四台仪器分别是:爆发和暂时源实验(BATSE),可变向闪烁光谱仪实验(OSSE),1Mev~30Mev范围内工作的成象望远镜(COMPTEL),1Mev~30Mev范围内工作的成象望远镜(COMPTEL)。
受到康普顿空间天文台成功的鼓舞,欧洲和美国的科研机构合作制订了一个新的γ射线望远镜计划-INTEGRAL,准备在2001年送入太空,它的上天将为康普顿空间天文台之后的γ射线天文学的进一步发展奠定基础。
我们知道,地球大气对电磁波有严重的吸收,我们在地面上只能进行射电、可见光和部分红外波段的观测。随着空间技术的发展,在大气外进行观测已成为可能,所以就有了可以在大气层外观测的空间望远镜(Space telescope)。空间观测设备与地面观测设备相比,有极大的优势:以光学望远镜为例,望远镜可以接收到宽得多的波段,短波甚至可以延伸到100纳米。没有大气抖动后,分辨本领可以得到很大的提高,空间没有重力,仪器就不会因自重而变形。前面介绍的紫外望远镜、X射线望远镜、γ射线望远镜以及部分红外望远镜的观测都都是在地球大气层外进行的,也属于空间望远镜。
哈勃空间望远镜(HST):
这是由美国宇航局主持建造的四座巨型空间天文台中的第一座,也是所有天文观测项目中规模最大、投资最多、最受到公众注目的一项。它筹建于1978年,设计历时7年,1989年完成,并于1990年4月25日由航天飞机运载升空,耗资30亿美元。但是由于人为原因造成的主镜光学系统的球差,不得不在1993年12月2日进行了规模浩大的修复工作。成功的修复使HST性能达到甚至超过了原先设计的目标,观测结果表明,它的分辨率比地面的大型望远镜高出几十倍。
HST最初升空时携带了5台科学仪器:广角/行星照相机,暗弱天体照相机,暗弱天体光谱仪,高分辨率光谱仪和高速光度计。
1997年的维修中,为HST安装了第二代仪器:有空间望远镜成象光谱仪、近红外照相机和多目标摄谱仪,把HST的观测范围扩展到了近红外并提高了紫外光谱上的效率。
1999年12月的维修为HST更换了陀螺仪和新的计算机,并安装了第三代仪器――高级普查摄像仪,这将提高HST在紫外-光学-近红外的灵敏度和成图的性能。
HST对国际天文学界的发展有非常重要的影响。
二十一世纪初的空间天文望远镜:
"下一代大型空间望远镜"(NGST)和"空间干涉测量飞行任务"(SIM)是NASA"起源计划"的关键项目,用于探索在宇宙最早期形成的第一批星系和星团。其中,NGST是大孔径被动制冷望远镜,口径在4~8米之间,是HST和SIRTF(红外空间望远镜)的后续项目。它强大的观测能力特别体现在光学、近红外和中红外的大视场、衍射限成图方面。将运行于近地轨道的SIM采用迈克尔干涉方案,提供毫角秒级精度的恒星的精密绝对定位测量,同时由于具有综合成图能力,能产生高分辨率的图象,所以可以用于实现搜索其它行星等科学目的。
"天体物理的全天球天体测量干涉仪"(GAIA)将会在对银河系的总体几何结构及其运动学做全面和彻底的普查,在此基础上开辟广阔的天体物理研究领域。GAIA采用Fizeau干涉方案,视场为1°。GAIA和SIM的任务在很大程度上是互补的。

天文台上现在还有没有供游客亲自观察天象的天文望远镜?
天文台是专业科研机构,平时是不对外开放的,你说的那种地方应该叫做天文馆,是搞科普的地方,天文馆里当然提供望远镜给游客看,比如北京天文馆,至于有的天文台提供望远镜,也是给人搞研究用的,而不是给游客用的。

南京天文台参观
同时,南京天文台还拥有先进的观测设施,为公众提供了实地观测星空的机会。在晴朗的夜晚,参观者可以亲自使用天文望远镜观测星空,感受宇宙的壮丽景色。这种亲身体验有助于培养人们对天文学的兴趣,激发探索宇宙的激情。南京天文台还为游客提供了丰富的互动体验项目。参观者可以参与天文学家的工作模拟游戏,了解...

中国哪里有能供游客观赏的天文望远镜?
一些天文台,甚至大学可能会有,遇到一些天文奇观之类的,可能对公众开放。不过个人感觉啊,知道就可以了,也别太为此兴师动众,很多人以为天文的有趣,以为自己喜欢天文,其实是因为看了一些广告,或者天文的图片。但实际上,实际的天文用起来,完全是另一回事吧:http:\/\/www.ytwscc.com\/222tianwenwang...

现在还在太空的太空望远镜还有几架,都叫什么?
目前已有不少太空望远镜在太空中运行,例如:观测可见光波段的哈勃太空望远镜(Hubble),观测红外波段的史匹哲太空望远镜(Spitzer),观测X光波段的钱德拉太空望远镜(Chandra),观察γ射线波段的康普顿太空望远镜(Compton)(已于2000年退役)哈勃空间望远镜 (Hubble Space Telescope,缩写为HST),是以天文学家哈勃为名,在轨道上环绕著...

南京有晚上可以让市民观察天体的天文馆吗?
不妨如此假设,紫金山天文台的望远镜,对公众开放,对我有吸引力么?答案依旧是,没有。原因有二:紫金山上的天文望远镜,上世纪三十年代从德国引进,口径大约是600mm。论上辈分,都可以称之为“爷爷”了,不一定恰当的比方,二战中叱咤风云的武器装备,时至今日还有实际应用价值么?恐怕很难了吧。望远镜...

去天文台如何买到望远镜?
2. 到访天文台并咨询:如果天文台允许向公众销售望远镜,你可以前往天文台进行咨询,并观察天文台使用的望远镜类型和品牌。在咨询时,可以表明自己的需求和预算,以获得更加适合自己的建议。3. 购买望远镜:如果你和天文台商定好了望远镜的类型和价格,可以直接在天文台购买。通常情况下,天文台会为你提供...

上海佘山天文台是每个人都能进去的吗?
向公众开放的是西佘山的上海天文博物馆,门票12元,里面是介绍天文科普知识的,也有天文望远镜,是展示的古董,你说的佘山天文台是中科院上海天文台佘山工作站,是科研单位,一般人不能进的。要用天文台的望远镜看星星是不可能的,现在用的都是射电望远镜,收集宇宙射线再成像的,即便是光学望远镜,也不是...

南京天文台 参观
紫金山天文台在紫金山上,要先爬山上去才能到。一般来说,你可以从火车站坐17到岗子村,走到白马停车场,从停车场后面的路上山,哪里有一条路上去就到天文台。你要是不想爬山,就打车上山,路费我不太清楚了。门票15,里面有专门让游客看得望远镜 ...

自己观察星星用什么样的天文望远镜
只看月亮,建议你买个双筒,口径大一点,倍数大一点..比一般的天文望远镜感觉要爽的多...如果要看环形山,(石头是不可能看见的)就买个折射...1000左右就行了,免的没了兴趣之后觉得浪费,这东西比较难操控,考验耐心恒心和追求程度...

南京紫金山天文台游客可能使用天文望远镜吗?
不能,不过有一台是对着太阳的,游客可以自己看太阳黑子

相似回答