p(p-a)(p-b)(p-c) (p为三角形周长的一半,即p=1/2(a+b+c))
是一种只要知道三角形的三边长a,b,c就能求出其面积的公式
对于海伦公式的证明 个人建议你去查一查中国的秦九韶公式 这两个公式是等效变形的
完成对秦九韶公示的证明也就是完成了海伦公式的证明
与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为下述推导[1] cosC = (a^2+b^2-c^2)/2abS=1/2*ab*sinC=1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]证明⑵中国宋代的数学家秦九韶在1247年也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜求积术”。秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。所谓“实”、“隅”指的是,在方程px 2=q,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}当P=1时,△ 2=q,△=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}因式分解得△ ^2=1/4[4a^2c^2-(a^2+c^2-b^2)^2]=1/4[(c+a) ^2-b ^2][b^ 2-(c-a)^ 2]=1/4(c+a+b)(c+a-b)(b+c-a)(b-c+a)=1/4(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c)=1/4[2p(2p-2a)(2p-2b)(2p-2c)]=p(p-a)(p-b)(p-c)由此可得:S△=√[p(p-a)(p-b)(p-c)]其中p=1/2(a+b+c)这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。S=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2} .其中c>b>a.根据海伦公式,我们可以将其继续推广至四边形的面积运算。如下题:已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积这里用海伦公式的推广S圆内接四边形= 根号下(p-a)(p-b)(p-c)(p-d) (其中p为周长一半,a,b,c,d,为4边)代入解得s=8√ 3证明⑶在△ABC中∠A、∠B、∠C对应边a、b、cO为其内切圆圆心,r为其内切圆半径,p为其半周长有tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=r∵r=(p-a)tanA/2=(p-b)tanB/2=(p-c)tanC/2∴ r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=[(p-a)+(p-b)+(p-c)]tanA/2tanB/2tanC/2=ptanA/2tanB/2tanC/2=r∴p^2r^2tanA/2tanB/2tanC/2=pr^3∴S^2=p^2r^2=(pr^3)/(tanA/2tanB/2tanC/2)=p(p-a)(p-b)(p-c)∴S=√p(p-a)(p-b)(p-c)证明⑷通过使用正弦定理和余弦定理的结合证明 (具体可以参考证明方法1)(证明过程选自度娘百科)数学上的海伦公式是什么
2、海伦公式又译希伦公式,传说是古代的叙拉古国王希伦二世发现的公式,利用三角形的三条边长来求取三角形面积。
海伦公式是什么?
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式。它是利用三角形的三条边的边长直接求三角形面积的公式。表达式为:S=√p(p-a)(p-b)(p-c),它的特点是形式漂亮,便于记忆。相传这个公式最早是由古希腊数学家阿基米德得出的,而因为这个公式最早出现在海伦的著作《测地术》中,所以...
Helen Theorem什么意思
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式。它是利用三角形的三条边的边长直接求三角形面积的公式。表达式为:S=√p(p-a)(p-b)(p-c),它的特点是形式漂亮,便于记忆。相传这个公式最早是由古希腊数学家阿基米德得出的,而因为这个公式最早出现在海伦的著作《测地术》中,所以...
海伦公式是什么
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式。它是利用三角形的三条边的边长直接求三角形面积的公式,表达式为:S=√p(p-a)(p-b)(p-c)。这个公式是由阿基米德得提出的,但人们以古希腊的数学家海伦命名这个公式,是因为这个公式最早出现在海伦的著作《测地术》中,并在海伦的...
什么是海伦公式?
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式。它是利用三角形的三条边的边长直接求三角形面积的公式。表达式为:S=√p(p-a)(p-b)(p-c)。海伦公式的提出为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用海伦公式可以更快更简便的...
海伦公式是什么
是一种只要知道三角形的三边长a,b,c就能求出其面积的公式 对于海伦公式的证明 个人建议你去查一查中国的秦九韶公式 这两个公式是等效变形的 完成对秦九韶公示的证明也就是完成了海伦公式的证明 与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明...
什么是海伦公式
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式。它是利用三角形的三条边的边长直接求三角形面积的公式。表达式为:S=√p(p-a)(p-b)(p-c),它的特点是形式漂亮,便于记忆。勾股定理在三维空间的推广:直角四面体三个直角三角形侧面的面积之平方和等于底面面积的平方。记底面三条...
海伦公式是什么 关于海伦公式的简介
1、海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式。它是利用三角形的三条边的边长直接求三角形面积的公式。表达式为:S=√p(p-a)(p-b)(p-c),它的特点是形式漂亮,便于记忆。2、相传这个公式最早是由古希腊数学家阿基米德得出的,而因为这个公式最早出现在海伦的著作《测地术》...
海伦公式是什么?
海伦面积公式是S=sqrt[p*(p-a)*(p-b)*(p-c)]。其中,p是半周长,定义为:p=(a+b+c)\/2。海伦面积公式的解释如下:1、三角形可以看作是由其三条边长a、b和c唯一确定的。2、三角形的半周长p是三条边长的和的一半,即p=(a+b+c)\/2。3、海伦公式利用了半周长和三条边长之间...
海伦公式和余玄定理是什么???几年级学的??
一、海伦公式:海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式。它是利用三角形的三条边的边长直接求三角形面积的公式。表达式为:S=√p(p-a)(p-b)(p-c),它的特点是形式漂亮,便于记忆。这个公式最早是由古希腊数学家阿基米德得出的,而因为这个公式最早出现在海伦的著作《测地术...