求数列通项公式有哪些方法?

如题所述

求数列通项公式常用以下几种方法:
一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。
例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。
解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。
二、已知数列的前n项和,用公式
S1 (n=1)
Sn-Sn-1 (n2)
例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5
(A) 9 (B) 8 (C) 7 (D) 6
解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B)
此类题在解时要注意考虑n=1的情况。
三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。
例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。
解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-为首项,-1为公差的等差数列,∴-= -,Sn= -,
再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,
- (n=1)
- (n2)
四、用累加、累积的方法求通项公式
对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。
例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式
解:∵(n+1)an+12-nan2+an+1an=0,可分解为[(n+1)an+1-nan](an+1+an)=0
又∵{an}是首项为1的正项数列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴ -=-,
又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)
温馨提示:内容为网友见解,仅供参考
第1个回答  2016-10-26
我只记得列项相消法

如何快速推导数列的通项公式?
数列的通项公式可以通过多种方法推导出来。以下是一些常见的方法:1.累加法:当数列是等差数列或等比数列时,可以使用累加法推导出通项公式。2.累乘法:当数列是等比数列时,可以使用累乘法推导出通项公式。3.待定系数法:当数列的前几项已知时,可以使用待定系数法推导出通项公式。4.递推关系法:当...

求数列的通项公式的方法
八种求数列通项公式的方法 一、公式法例1 已知数列 满足 , ,求数列 的通项公式。解: 两边除以 ,得 ,则 ,故数列 是以 为首项,以 为公差的等差数列,由等差数列的通项公式,得 ,所以数列 的通项公式为 。评注:本题解题的关键是把递推关系式 转化为 ,说明数列 是等差数列,再直接...

数列求通项公式是什么呢?
数列求通项公式的方法有归纳法,公式法,累加法,累乘法,构造法,取倒数法,取对数法,不动点法等等,按一定次序排列的一列数叫做数列,数列中的每一个数都叫做这个数的项。数列前n项和的通项公式,前n项和公式为:Sn=n*a1+n(n-1)d\/2或Sn=n(a1+an)\/2。等差数列an的通项公式为:an=a1...

求通项公式方法汇总十二种
求通项公式的方法有累加法、累乘法、待定系数法、迭代法、取对数法、换元法、数学归纳法。按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an项的值。而数列通项公式的求...

数列求通项公式方法总结
数列求通项的方法很多,有以下四种基本方法:( 1 )直接法.就是由已知数列的项直接写出,或通过对已知数列的项进行代数运算写出。( 2 )观察分析法.根据数列构成的规律,观察数列的各项与它所对应的项数之间的内在联系,经过适当变形,进而写出第n项a n 的表达式即通项公式。( 3 )待定系数法....

通项公式的求法
还有以下的求和方法:不完全归纳法、累加法、倒序相加法。等比数列:通项公式:an=a1*q^(n-1)(即qn-1次方),a1为首项,an为第n项,an=a1*q^(n-1),am=a1*q^(m-1)则an\/am=q^(n-m),其中an=am*q^(n-m);a,G,b若构成等比中项,则G^2=ab(a,b,G不等于0);若m+n=p+q则a...

高考中求数列的通项公式共有几种方法。
高考中求数列的通项公式主要有以下七种方法,具体情况说明如下:1.公式法,当题意中知道,某数列的前n项和sn,则可以根据公式求得an=sn-s(n-1).2.待定系数法:若题目特征符合递推关系式a1=A,an+1=Ban+C(A,B,C均为常数,B≠1,C≠0)时,可用待定系数法构造等比数列求其通项公式。3....

求数列通项公式
1、等差数列、等比数列的通项公式的求法: 若在已知数列中存在:(常数)或的关系,可采用求等差、等比数列的通项公式的求法,确定数列的通项。 2、非等差、等比数列的通项公式的求法。 (1)观察法:通过观察数列中的项与项数的关系,找出项与项数n的关系。 (2)累差法:若在已知数列中相邻两...

数列求通项公式的方法
数列求通项公式的方法:公式法、累加法、累乘法、转换法等。按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。数学公式是人们在研究自然界物与物之间时发现的一些联系,并通过一定的方式表达出来的一种表达方法。是表征自然界不同...

如何求数列的通项公式?
二阶数列:类比一阶递归数列概念,不妨定义同时含有an+2、an+1、an的递推式为二阶数列,而对与此类数列求其通项公式较一阶明显难度大了。为方便变形,可以先如此诠释二阶数列的简单形式。累加法:递推公式为a(n+1)=an+f(n)。累乘法:递推公式为a(n+1)\/an=f(n)。构造法:将非等差数列、...

相似回答