limx→2(x^2-4)/sin(x-2),求极限

要全过程,越详细越好.谢谢!

limx→2(x^2-4)/sin(x-2)
=limx→2(x+2)[(x-2)/sin(x-2)],
当x→2时,x-2→0,x+2→4,
故x→2时,有(x-2)/sin(x-2)→1.
原式=4
温馨提示:内容为网友见解,仅供参考
第1个回答  2008-10-16
=(x+2)(x-2)/(x-2)=x+2=2+2=4
第2个回答  2008-10-16
lim(x^2-4)/sin(x-2)
=lim[(x+2)(x-2)]/sin(x-2)
x-->2
x-2--->0
lim(x-2)/sinx=1
lim[(x+2)(x-2)]/sin(x-2)
=lim(x+2)=4

这里利用了那个重要的极限limsinx/x=1 (x-->0)
其实是以t=x-2作为一个整体的
第3个回答  2019-09-04
x趋于0时,sin2/x有界
而x^2是无穷小
所以x趋于0时,x^2sin2/x
是无穷小
故limx^2sin2/x
x→0
的极限=0

limx→2(x^2-4)\/sin(x-2),求极限
limx→2(x^2-4)\/sin(x-2)=limx→2(x+2)[(x-2)\/sin(x-2)],当x→2时,x-2→0,x+2→4,故x→2时,有(x-2)\/sin(x-2)→1.原式=4

limx→2(x^2-4)\/sin(x-2),求极限
limx→2(x^2-4)\/sin(x-2)=limx→2(x+2)[(x-2)\/sin(x-2)],当x→2时,x-2→0,x+2→4,故x→2时,有(x-2)\/sin(x-2)→1.原式=4

求解lim x→2 x^2-4\/sin(x-2),要过程,谢
lim(x→2) (x^2-4)\/sin(x-2)=lim(x→2) (x+2)[(x-2)\/sin(x-2)]∵ x→2 ,t=x-2→0 ,t\/sint -> 1 (重要极限)= (2+2)* 1 = 4

求极限limx→2 (x²-4)\/sin(x-2)
0\/0型极限,用第一个重要极限公式求。

求极限lim(x→2)(x^2-4)sin1\/(x-2),求详细过程~
2011-11-18 计算极限lim(x→0)[1-x^2-e^(-x^2)]\/(... 2 2014-02-25 求lim(x→1)sin(x+1)\/x+1 详细解释!求 ... 2 2014-10-03 lim(x∧2 - 4)sin(1\/(x-2))其中x趋近于... 1 2011-04-19 求助,高数极限题,x->0的极限? f=x^2\/(sqrt(... 1 2017-08-22 limx趋于...

lim x->2 sin(x^2-4)\/x-2=过程啊
解法一:等价无穷小 lim sin(x²-4)\/(x-2)x→2 =lim (x²-4)\/(x-2)x→2 =lim (x+2)(x-2)\/(x-2)x→2 =lim (x+2)x→2 =2+2 =4 解法二:洛必达法则 lim sin(x²-4)\/(x-2)x→2 =lim 2x·cos(x²-4)\/1 x→2 =2·2·cos(2²-...

求极限lim(x→∞)2x^2-x\/x^2+4
2014-03-17 求极限lim(1+2\/x)^2x+3 2014-05-06 求极限:lim(n→∞)(x+1)(x-2)\/(2x+1)(... 2014-03-20 求极限 lim x→(2\/π)(tanx)^(2x-π) 3 2013-10-12 lim x→∞2x+1\/x 和lim x→0 1-x^2\/1... 3 2014-01-06 求极限lim(x→4)√(2x+1)-3\/(√x-2),要详....

证明: limx→2(x^2)=4(详细的证明过程)
回答:limx→2(x^2)=lim⊿x→0<(x+⊿x)^2-x^2>\/⊿x=lim⊿x→02X+⊿x=2x=4

lim x→2 x^2-4\/x-2 求函数的极限,要过程,怎么求?
^x=lim[1+4\/(x-2)]^(x-2) x→∞ =lim[1+4\/(x-2)]^(4*(x-2)\/4)=e^4 x→∞ lim(x+2\/x-2)^x=e^lim x(ln(x+2)\/(x-2))=e^lim [(ln(x+2)-ln(x-2)]\/(1\/x) x→∞ =e^lim [1\/(x+2)-1\/(x-2)]\/(-1\/x²) =e^lim {-4\/[(x+2)(x-2...

limx->2 sin(x^2-4)\/x-2=??
limx->0e^x^2-e^(2-2cosx)\/x^4 =lim[2xe^x2+2sinxe^(2-2cosx)]\/4x3 =(1\/2)lim [e^x2+e^(2-2cosx)]\/x2 =(1\/2)lim [e^x2-1+e^(2-2cosx)-1]\/x2 =(1\/2){lim [e^x2-1]\/x2+[e^(2-2cosx)-1]\/x2} =(1\/2){1+lim [2-2cosx]\/x2} =(1\/2)...

相似回答