已知x+y+z=1,x^2+y^2+z^2=2,x^3+y^3+z^3=3,求x^4+y^4+z^4的值
写一下过程,谢谢!!!
参考资料:sweetandbitter - 魔导师 十级
已知x+y+z=1,x^2+y^2+z^2=2,x^3+y^3+z^3=3,求x^4+y^4+z^4的值
25\/6挺麻烦:把x+y+z=1两边平方可以得出xy+xz+yz=-1\/2;再把x^2+y^2+z^2=2两边平方;(x^3+y^3)+(x^3+z^3)+(y^3+z^3)=6; 展开化简可先求出xyz的值;再xy+xz+zyz=-1\/2平方,可以得x^2y^2+x^2z^2+y^2z^2=-1\/12;再x^2+y^2+z^2=2平方 细心你一定可以算出...
已知x+y+z=1,x^2+y^2+z^2=2,x^3+y^3+z^3=3,求x^4+y^4+z^4,
因为(x^3+y^3+z^3)*(x+y+z)=x^4+y^4+z^4+xy*(x^2+y^2)+xz(x^2+z^2)+yz(y^2+z^2)=x^4+y^4+z^4+xy(1-z^2)+xz(1-y^2)+yz(1-x^2)=x^4+y^4+z^4+xy+xz+yz-xyz(x+y+z)=3所以x^4+y^4+z^4=3-(xy+xz+yz)+xyz因为x^2+y^2+z^2 =2...
已知:x+y+z=1,x^2+y^2+z^2=2,x^3+y^3+z^3=3,求x^4+y^4+z^4=
解:X^4+Y^4+Z^4=(X^2+Y^2+Z^2)^2-2(X^2*Y^2+Y^2*Z^2+Z^2*X^2)(X+Y+Z)^2=X^2+Y^2+Z^2+2(XY+YZ+ZX)解得XY+YZ+ZX=1\/2 X^3+Y^3+Z^3=(X+Y+Z)(X^2+Y^2+Z^2-XY-YZ-ZX)+3XYZ 解得XYZ=1\/2 设XY=a,YZ=b,ZX=c.则X^2*Y^2+Y^2*Z^2+Z...
已知x+y+z=1,x^2+y^2+z^2=2,x^3+y^3+z^3=3,求x^4+y^4+z^4,哪位大神帮...
2(xy+xz+yz)=-1 所以 xy+xz+yz=-1\/2 因为 x^3+y^3+z^3=3=3(x+y+z)x^3-x+y^3-y+z^3-z=2(x+y+z)=2 所以 x^2(1-x)+y^2(1-y)+z^2(1-z)=x^2(y+z)+y^2(x+z)+z^2(x+y)=xy(x+y)+xz(x+z)+yz(y+z)=xy(1-z)+xz(1-y)+yz(1-x)=xy+...
已知x+y+z=1,x^2+y^2+z^2=3,x^3+y^3+z^3=5,求x^4+y^4+z^4的值
和x+y+z=1,x^2+y^2+z^2=3,x^3+y^3+z^3=5 可得:xy+yz+xz=[(x+y+z)^2-x^2+y^2+z^2]\/2=-1 x^3+y^3+z^3 =(x+y+z)(x^2+y^2+z^2)-(xy+yz+xz)(x+y+z)+3xyz 3xyz=5-1*3+(-1)*1=1,则xyz=1\/3 所以x^4+y^4+z^4=1*5-(-1)*3+(1\/...
已知,实数x、y、z满足:x+y+z=1、x²+y²+z²=2、x³+y³+z...
x4+y4+z4=4
已知,实数x、y、z满足:x+y+z=1、x²+y²+z²=2、x³+y³+z...
答案:25\/6 【不好意思,看到题目时太晚了】因为x+y+z=1 所以 (x+y+z)²=1 x²+y²+z²+2xy+2xz+2yz=1 因为x²+y²+z²=2 所以 xy+xz+yz=-1\/2 所以 (xy+xz+yz)²=1\/4 x²y²+x²z²+y²z&...
已知x加y加z等于一,x平方加y平方加z平方等于二,x三次方加y三次方加z...
设u=x+y+z=1,v=xy+yz+zx,w=xyz,则 x^2+y^2+z^2=u^2-2v=2,v=-1\/2,x^3+y^3+z^3-3xuz=u(u^2-3v)=5\/2=3-3w,w=1\/6,由恒等式x^4+y^4+z^4=u^4-4u^2*v+2v^2+4uw得 x^4+y^4+z^4=1+2+1\/2+2\/3=25\/6.
已知x+y+z=1 x2+y2+z2=2 x3+y3+z3=3 求x4+y4+z4=?
(x2+y2+z2)²=x4+y4+z4-2x²y²-2y²z²-2x²z²=4,故x4+y4+z4=4+2(x²y²+y²z²+x²z²)x²y²+y²z²+x²z²=(xy+yz+zx)²-2xyz(x+y+z)=(...
已知X+Y+Z=1 X^2+Y^2+Z^2=2 X^3+Y^3+Z^3=3 求1\/xyz
X+Y+Z=1 x^2+y^2+z^2+2xy+2xz+2yz=1 因为x+y^2+z^2=2 xy+xz+yz=-1\/2 X^3+Y^3+Z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)=1*(2+1\/2)所以 3-3xyz=5\/2 xyz=1\/6 1\/xyz=6