进制之间的转换

如题所述

第1个回答  2022-07-10

进制之间转换需要区分正整数和负数,平常的面试当中,还没有遇到相关的问题,笔试阶段可能碰到一两个,我在这里做一个简单的整理,解决普通的问题应该绰绰有余。

目录

最后一位数是2的零次方,依次类推进行加法运算
例如:11100转十进制

二进制转换为十六进制的方法是,取四合一法,即从二进制的小数点为分界线,向左(向右)每四位取成一位,如 0 0 1 1| 1 1 0 1 ,左半边=2+1=3 右半边=8+4+1=13=D,结果,00111101就可以换算成十六进制的3D。

十进制转换为二进制采用“除2取余,逆序排列”法

类似十进制转二进制,不过是用16来除,如下

65036 除 16,余数12(C),商4064
4064 除 16,余数0(0),商254
254 除 16,余数 14(E),商15
15除16,余数 15(F),商0,结束
得16进制为 FE0C

十六进制转二进制方法就是一分四,即一个十六进制数分为四个二进制数

如0x1ED转换为二进制,1即为0001,E为1110,D为1101,转为二进制:111101101

类似二进制转十进制

例:2AF5换算成10进制:

用竖式计算:

第0位: 5 * 16^0 = 5

第1位: F * 16^1 = 240

第2位: A * 16^2= 2560

第3位: 2 * 16^3 = 8192

相加为10997

十进制的小数转换为二进制采用“乘2取整,顺序排列”法,具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,此时0或1为二进制的最后一位。或者达到==所要求的精度==为止。然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。
如:0.625=(0.101)B

0.625*2=1.25==取出整数部分1

0.25*2=0.5====取出整数部分0

0.5*2=1==取出整数部分1

再如:0.7=(0.1 0110 0110...)B

0.7*2=1.4====取出整数部分1

0.4*2=0.8====取出整数部分0

0.8*2=1.6====取出整数部分1

0.6*2=1.2====取出整数部分1

0.2*2=0.4====取出整数部分0

0.4*2=0.8====取出整数部分0

0.8*2=1.6====取出整数部分1

0.6*2=1.2====取出整数部分1

0.2*2=0.4====取出整数部分0

二进制转十进制则是小数点前同正整数运算,小数点后则是从左往右乘以二的相应负次方并递减

同整数一分四和四合一方法。

与二进制转换类似

需要了解几个知识点,源码, 反码,补码
原码 :一个正数,按照绝对值大小转换成的二进制数;一个负数按照绝对值大小转换成的二进制数,然后最高位补1,称为原码
比如 00000000 00000000 00000000 00000101 是 5的 原码;10000000 00000000 00000000 00000101 是 -5的 原码。(注意,一个int类型是4字节,每个字节有8位。)
反码 :正数的反码与原码相同, 负数的反码为对该数的原码除符号位外各位取反
补码 :正数的补码与原码相同,负数的补码为对该数的原码除符号位外各位取反,然后在最后一位加1.
比如:10000000 00000000 00000000 00000101 的反码是:11111111 11111111 11111111 11111010。 那么,补码为:
11111111 11111111 11111111 11111010 + 1 = 11111111 11111111 11111111 11111011
总结:对于正数,原码=反码=补码。对于负数而言,补码=反码+1,最高位为符号为始终不变

注意:负数使用补码转换为十六进制,-5的补码为1111 1111 1111 1111 1111 11111111 1011,转换成十六进制为0xFFFFFFFB

注意:所有参与运算的都是以补码形式进行的,结果也是补码,因此也需要将补码转换成为原码的形式存在(因为对于正数而言,原码=补码,所以我们在进行为运算的时候基本会忽略这条规则)
关于|操作,与||不同的一点是,||是断路运算
记住这个表

1.清零(&)
与操作 & ,想要哪几位清零,就和那几位为0的二进制数相与
比如 a&0结果为0
2.取一个数的指定位置(&)
比如取数 X=1010 1110 的低4位,令Y的低四位为1,其余位为0,即Y=0000 1111,进行相与操作,X&Y=0000 1110的到低四位
3.判断奇偶(&)
只要根据最未位是0还是1来决定,为0就是偶数,为1就是奇数。因此可以用if ((a & 1) == 0)代替if (a % 2 == 0)来判断a是不是偶数。
4.将某些位置设置为1
比如将数 X=1010 1110 的低4位设置为1,只需要另找一个数Y,令Y的低4位为1,其余位为0,即Y=0000 1111,然后将X与Y进行按位或运算(X|Y=1010 1111)即可得到。
5.翻转指定位置(^)
比如将数 X=1010 1110 的低4位进行翻转,只需要另找一个数Y,令Y的低4位为1,其余位为0,即Y=0000 1111,然后将X与Y进行异或运算(X^Y=1010 0001)即可得到
与0^值不变
6.交换两个数(^)
通常我们交换两个值都是借助第三个变量来实现的,如:tmp=A;A=B;B=tmp.我们还可以通过位异或运算来实现,原理是:利用一个数异或本身等于0和异或运算符交换律.
如:A=A B;B=A B;A=A^B

7.使一个数的最低位为0(~)
使a的最低位为0,可以表示为:a & 1。 1的值为 1111 1111 1111 1110,再按"与"运算,最低位一定为0
8.乘以2或者除以2(<< >>)
在java中常用,见于ArrayList的扩容,也说明了Arraylist的扩容为什么是1.5,因为位移操作比普通的数学运算更快。

当位移大于32时,我们用32对其取余,即为移动的位数.每向左移动一位,相当于 2(很好理解,原来的2的n次方相加向左移位后值变成了2的n+1次方相加了),左移32位相当一没有移动*
位移分为逻辑位移和算数位移,左移都是逻辑位移,右移分为逻辑右移和算数右移。Java算数运算中,右移符号位不变,需要在高位补1。 -2^31,原码是10000000 00000000 00000000 00000000,反码是1111111 11111111 11111111 11111111,补码为反码加一为10000000 00000000 00000000 00000000,进行左移变为0.

进制之间如何转换?
转化为十进制 11010(2)=1*24+1*23+0*22+1*21+0*20=26 转为八进制 100111=47(8)---分步计算 100=1*22+0*21+0*20=4 与 111=1*22+1*21+1*20=7 转为十六进制 10011100=9c(16)---分步计算 1001=1*2+0*2+1*2=9 与 1100=1*23+1*22+0*21+0*2...

进制之间怎么转换?
2、二进制转十进制:把二进制数按权展开,相加即得十进制数。3、二进制转八进制:3位二进制数按权展开相加得到1位八进制数(注:3位二进制转成八进制是从右到左开始转换,不足时补0)。4、八进制转二进制:八进制数通过除2取余数,得到二进制数,对每个八进制为3个二进制,不足时在最左边补...

怎样进行进制间的转换
方法为:把二进制数按权展开、相加即得十进制数。(具体用法如下图)二、二进制与八进制之间的转换 1.二进制转八进制 方法为:3位二进制数按权展开相加得到1位八进制数。(注意事项,3位二进制转成八进制是从右到左开始转换,不足时补0)。(具体用法如下图)2.八进制转成二进制 方法为:八...

进制转换的方法
1、十进制到其他进制的转换:除基取余法,将十进制数不断除以要转换的进制,直到商为0,然后将每次的余数反向排列即可得到转换后的数。2、其他进制到十进制的转换:乘基加权法,将每一位上的数乘以对应位置的权值,然后将各个位上的乘积相加即可得到十进制数。3、二进制、八进制和十六进制之间的转换...

数字进制间的转换方法
数字进制间的转换方法有:1、二进制与十进制之间的转换:十进制转二进制:十进制数除2取余法,即十进制数除2,余数为权位上的数,得到的商值继续除2,依此步骤继续向下运算直到商为0为止。二进制转十进制:把二进制数按权展开、相加即得十进制数。2、二进制与八进制之间的转换:二进制转八进制:...

进制转换方法
一、二进制与十进制之间的转换 1、十进制转二进制:十进制数除2取余法,即十进制数除2,余数为权位上的数,得到的商值继续除,直到商为0为止。2、二进制转十进制:把二进制数按权展开、相加即得十进制数。二、二进制与八进制之间的转换 1、八进制转二进制:八进制数通过除2取余法,得到二...

关于计算机的进制转换方法
进数转换:1、二进制数、十六进制数转换为十进制数(按权求和)二进制数、十六进制数转换为十进制数的规律是相同的。把二进制数(或十六进制数)按位权形式展开多项式和的形式,求其最后的和,就是其对应的十进制数——简称“按权求和”.例如:把(1001.01)2 二进制计算。解:(1001.01)2 =8...

进制的转换方法
1、二进制转换成十进制 任何一个二进制数的值都用它的按位权展开式表示。例如:将二进制数(10101.11)2转换成十进制数。(10101.11)2=1*24+0*23+1*22+0*21+1*20+1*2-1+1*2-2=24+22+20+2-1+2-2=(21.75)10。2、十进制整理转换成二进制 将十进制整数转换成二进制...

简述不同进位计数制之间数据的转换方法
1、十进制转换为其他进制:方法将十进制数除以目标进制数,取余数,然后将商继续除以目标进制数,取余数,直到商为0为止。所有的余数组成了转换后的数。将十进制的10转换为二进制。10除以2得5余0,然后5再除以2得2余1,然后2再除以2得1余0,最后1除以2得0余1。2、二进制与十六进制之间的转换:...

进制之间的转换方法
进制之间的转换方法如下:1、十进制转二进制和十进制转八进制:将十进制数不断除以2,直到商为0,然后将每一步的余数倒序排列即可得到二进制表示。将十进制数不断除以8,直到商为0,然后将每一步的余数倒序排列即可得到八进制表示。2、十进制转十六进制和二进制转十进制:将十进制数不断除以16,...

相似回答
大家正在搜