∫dx/(1+√(x)+√(1+x)) 这个怎么做(ノ≧ڡ≦)谢谢~

如题所述

令 √x = tanu, 则 x = (tanu)^2,
I = ∫dx/[1+√x+√(1+x)]
= ∫2tanu(secu)^2du/(1+tanu+secu)
= 2∫tanusecudu/(cosu+sinu+1)
= 2∫sinudu/[(cosu)^2(cosu+sinu+1)]
半角代换,令 t = tan(u/2),得
I = 4∫t(1+t^2)dt/[(1-t)^2(1+t)^3]
= (1/2)∫[-1/(1-t)+2/(1-t)^2-1/(1+t)+4/(1+t)^2-4/(1+t)^3]dt
= (1/2)[ln|1-t| + 2/(1-t)-ln|1+t|-4/(1+t)+2/(1+t)^2]+C
= (1/2)[ln|1-tan(u/2)| -ln|1+tan(u/2)| + 2/[1-tan(u/2)]
-4/[1+tan(u/2)]+2/[1+tan(u/2)]^2+C
再还原成 x 的函数即可。
温馨提示:内容为网友见解,仅供参考
无其他回答
相似回答