基于单片机的电子密码锁设计

设计一个由51单片机控制的电子密码锁,输入接口使用4×4键盘,输出接口使用6位7段数码管。单片机将输入的密码与设定的密码比较,若密码正确,则密码锁打开(绿色发光二极管亮一秒);若密码不正确,红色发光二极管亮一秒。谢谢了

功能键
S6---S15 数字键0-9
S16---更改密码 S17---更改密码完毕后确认
S18---重试密码、重新设定 S19---关闭密码锁
初始密码:000000 密码位数:6位
注意:掉电后,所设密码会丢失,重新上点时,密码恢复为原始的000000
与P1相连的8位发光LED点亮代表锁被打开;熄灭代表锁被锁上

程序功能: 本程序结合了24C02存储器的存储功能,可以掉电保存密码。
第一次运行时,若输入000000原始密码后无反应,可以试验着将主程序中前面的
一小段被注释线屏蔽的程序前的注释线删掉,然后重新编译下载(可以将密码还原为000000)。
此后,再将这小段程序屏蔽掉,再编译下载。方可正常使用。
1、开锁:
下载程序后,直接按六次S7(即代表数字1),8位LED亮,锁被打开,输入密码时,
六位数码管依次显示小横杠。
2、更改密码:
只有当开锁(LED亮)后,该功能方可使用。
首先按下更改密码键S16,然后设置相应密码,此时六位数码管会显示设置密码对应
的数字。最后设置完六位后,按下S17确认密码更改,此后新密码即生效。
3、重试密码:
当输入密码时,密码输错后按下键S18,可重新输入六位密码。
当设置密码时,设置中途想更改密码,也可按下此键重新设置。
4、关闭密码锁:
按下S19即可将打开的密码锁关闭。
推荐初级演示步骤:输入原始密码000000---按下更改密码按键S16---按0到9设置密码---按S17
确认密码更改---按S18关闭密码锁---输入新的密码打开密码锁
*******************************************************************************/
#include<reg52.h>
#include <intrins.h>
#define uint unsigned int
#define uchar unsigned char

uchar old1,old2,old3,old4,old5,old6; //原始密码000000
uchar new1,new2,new3,new4,new5,new6; //每次MCU采集到的密码输入
uchar a=16,b=16,c=16,d=16,e=16,f=16; //送入数码管显示的变量
uchar wei,key,temp;

bit allow,genggai,ok,wanbi,retry,close; //各个状态位

sbit dula=P2^6;
sbit wela=P2^7;
sbit beep=P2^3;
sbit sda=P2^0; //IO口定义
sbit scl=P2^1;

unsigned char code table[]=
{0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,
0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x00,0x40};

/*****************IIC芯片24C02存储器驱动程序************************************/

void nop()
{
_nop_();
_nop_();
}
/////////24C02读写驱动程序////////////////////
void delay1(unsigned int m)
{ unsigned int n;
for(n=0;n<m;n++);
}

void init() //24c02初始化子程序
{
scl=1;
nop();
sda=1;
nop();
}

void start() //启动I2C总线
{
sda=1;
nop();
scl=1;
nop();
sda=0;
nop();
scl=0;
nop();
}

void stop() //停止I2C总线
{
sda=0;
nop();
scl=1;
nop();
sda=1;
nop();
}

void writebyte(unsigned char j) //写一个字节
{
unsigned char i,temp;
temp=j;
for (i=0;i<8;i++)
{
temp=temp<<1;
scl=0;
nop();
sda=CY; //temp左移时,移出的值放入了CY中
nop();
scl=1; //待sda线上的数据稳定后,将scl拉高
nop();
}
scl=0;
nop();
sda=1;
nop();
}

unsigned char readbyte() //读一个字节
{
unsigned char i,j,k=0;
scl=0; nop(); sda=1;
for (i=0;i<8;i++)
{
nop(); scl=1; nop();
if(sda==1)
j=1;
else
j=0;
k=(k<<1)|j;
scl=0;
}
nop();
return(k);
}

void clock() //I2C总线时钟
{
unsigned char i=0;
scl=1;
nop();
while((sda==1)&&(i<255))
i++;
scl=0;
nop();
}

////////从24c02的地址address中读取一个字节数据/////
unsigned char read24c02(unsigned char address)
{
unsigned char i;
start();
writebyte(0xa0);
clock();
writebyte(address);
clock();
start();
writebyte(0xa1);
clock();
i=readbyte();
stop();
delay1(100);
return(i);
}

//////向24c02的address地址中写入一字节数据info/////
void write24c02(unsigned char address,unsigned char info)
{
start();
writebyte(0xa0);
clock();
writebyte(address);
clock();
writebyte(info);
clock();
stop();
delay1(5000); //这个延时一定要足够长,否则会出错。因为24c02在从sda上取得数据后,还需要一定时间的烧录过程。
}
/****************************密码锁程序模块********************************************************/

void delay(unsigned char i)
{
uchar j,k;
for(j=i;j>0;j--)
for(k=125;k>0;k--);
}

void display(uchar a,uchar b,uchar c,uchar d,uchar e,uchar f)
{
dula=0;
P0=table[a];
dula=1;
dula=0;

wela=0;
P0=0xfe;
wela=1;
wela=0;
delay(5);

P0=table[b];
dula=1;
dula=0;

P0=0xfd;
wela=1;
wela=0;
delay(5);

P0=table[c];
dula=1;
dula=0;

P0=0xfb;
wela=1;
wela=0;
delay(5);

P0=table[d];
dula=1;
dula=0;

P0=0xf7;
wela=1;
wela=0;
delay(5);

P0=table[e];
dula=1;
dula=0;

P0=0xef;
wela=1;
wela=0;
delay(5);

P0=table[f];
dula=1;
dula=0;

P0=0xdf;
wela=1;
wela=0;
delay(5);
}

void keyscan()
{
{
P3=0xfe;
temp=P3;
temp=temp&0xf0;
if(temp!=0xf0)
{
delay(10);
if(temp!=0xf0)
{
temp=P3;
switch(temp)
{
case 0xee:
key=0;
wei++;
break;

case 0xde:
key=1;
wei++;
break;

case 0xbe:
key=2;
wei++;
break;

case 0x7e:
key=3;
wei++;
break;
}
while(temp!=0xf0)
{
temp=P3;
temp=temp&0xf0;
beep=0;
}
beep=1;
}
}
P3=0xfd;
temp=P3;
temp=temp&0xf0;
if(temp!=0xf0)
{
delay(10);
if(temp!=0xf0)
{
temp=P3;
switch(temp)
{
case 0xed:
key=4;
wei++;
break;

case 0xdd:
key=5;
wei++;
break;

case 0xbd:
key=6;
wei++;
break;

case 0x7d:
key=7;
wei++;
break;
}
while(temp!=0xf0)
{
temp=P3;
temp=temp&0xf0;
beep=0;
}
beep=1;
}
}
P3=0xfb;
temp=P3;
temp=temp&0xf0;
if(temp!=0xf0)
{
delay(10);
if(temp!=0xf0)
{
temp=P3;
switch(temp)
{
case 0xeb:
key=8;
wei++;
break;

case 0xdb:
key=9;
wei++;
break;

case 0xbb:
genggai=1;
wei=0;
break;

case 0x7b:
if(allow)
ok=1;
break;
}
while(temp!=0xf0)
{
temp=P3;
temp=temp&0xf0;
beep=0;
}
beep=1;
}
}
P3=0xf7;
temp=P3;
temp=temp&0xf0;
if(temp!=0xf0)
{
delay(10);
if(temp!=0xf0)
{
temp=P3;
switch(temp)
{
case 0xe7:
retry=1;
break;

case 0xd7:
close=1;
break;
}
while(temp!=0xf0)
{
temp=P3;
temp=temp&0xf0;
beep=0;
}
beep=1;
}
}
}
}

void shumima() //对按键采集来的数据进行分配
{
if(!wanbi)
{
switch(wei)
{
case 1:new1=key;
if(!allow) a=17;
else a=key; break;
case 2:new2=key;
if(a==17) b=17;
else b=key; break;
case 3:new3=key;
if(a==17) c=17;
else c=key; break;
case 4:new4=key;
if(a==17) d=17;
else d=key; break;
case 5:new5=key;
if(a==17) e=17;
else e=key; break;
case 6:new6=key;
if(a==17) f=17;
else f=key;
wanbi=1; break;
}
}
}

void yanzheng() //验证密码是否正确
{
if(wanbi) //只有当六位密码均输入完毕后方进行验证
{
if((new1==old1)&(new2==old2)&(new3==old3)&(new4==old4)&(new5==old5)&(new6==old6))
allow=1; //当输入的密码正确,会得到allowe置一
}
}

void main()
{

init(); //初始化24C02
/*********下面的一小段程序的功能为格式化密码存储区。************
******当24c02中这些存储区由于其他程序的运行而导致***************
*******所存数据发生了变化,或者密码遗忘时, ********************
******可以删掉其前面的注释线,然后重新编译下载。****************
******而将密码还原为000000后,请将下面的程序用******************
******注释屏蔽掉,重新编译、下载,方可正常使用****************/
// write24c02(110,0x00);
// write24c02(111,0x00);//24c02的第110到115地址单元作为密码存储区
// write24c02(112,0x00);
// write24c02(113,0x00);
// write24c02(114,0x00);
// write24c02(115,0x00);
/*******************************************************************/

old1=read24c02(110);
old2=read24c02(111);
old3=read24c02(112);
old4=read24c02(113);
old5=read24c02(114);
old6=read24c02(115);

while(1)
{
keyscan();
shumima();
yanzheng();
if(allow) //验证完后,若allow为1,则开锁
{
P1=0x00;
if(!genggai)
wanbi=0;
}
if(genggai) //当S16更改密码键被按下,genggai会被置一
{
if(allow) //若已经把锁打开,才有更改密码的权限
{
while(!wanbi) //当新的六位密码没有设定完,则一直在这里循环
{
keyscan();
shumima();
if(retry|close) //而当探测到重试键S18或者关闭密码锁键S19被按下时,则跳出
{ wanbi=1;
break;
}
display(a,b,c,d,e,f);
}
}
}
if(ok) //更改密码时,当所有六位新密码均被按下时,可以按下此键,结束密码更改
{ //其他时间按下此键无效
ok=0; wei=0;
genggai=0;
old1=new1;old2=new2;old3=new3; //此时,旧的密码将被代替
old4=new4;old5=new5;old6=new6;
//新密码写入存储区。
write24c02(110,old1);
write24c02(111,old2);
write24c02(112,old3);
write24c02(113,old4);
write24c02(114,old5);
write24c02(115,old6);
a=16;b=16;c=16;d=16;e=16;f=16;
}
if(retry) //当重试按键S18被按下,retry会被置位
{
retry=0; wei=0;wanbi=0;
a=16;b=16;c=16;d=16;e=16;f=16;
new1=0;new2=0;new3=0;new4=0;new5=0;new6=0;
}
if(close) //当关闭密码锁按键被按下,close会被置位
{
close=0;genggai=0;//所有变量均被清零。
wei=0; wanbi=0;
allow=0;
P1=0xff;
a=16;b=16;c=16;d=16;e=16;f=16;
new1=0;new2=0;new3=0;new4=0;new5=0;new6=0;
}
display(a,b,c,d,e,f); //实时显示
}
}
对着代码自己做吧,,要是还做不出来,,那我就不说什么了,,
温馨提示:内容为网友见解,仅供参考
第1个回答  2021-03-30

第一节课

基于单片机的智能电子密码锁怎么做
keyval=0xff; \/\/按键值初始化 while(keyval!=D[0]) \/\/第一位密码输入不正确,等待 ;while(keyval!=D[1]) \/\/第二位密码输入不正确,等待 ;while(keyval!=D[2]) \/\/第三位密码输入不正确,等待 ;while(keyval!=D[3]) \/\/第四位密码输入不正确,等待 ;while(keyval!=D[...

急!!!我们需要设计一个数字密码锁,如何让它通电自动清零啊???_百度知...
电子密码锁的核心技术是单片机及其相关电路的设计。在本设计中,我们选择了AT89C2051单片机作为核心控制单元。AT89C2051是一款低电压、高性能的COMS八位微处理器,内置2K字节的可编程FLASH存储器,不需要外部RAM和ROM,可以大大降低系统成本。1.3 硬件系统设计 硬件系统主要由单片机、键盘、报警系统、显示系统、...

求助:电子密码锁设计与制作
在图1所示电路中,P1口连接8个密码按键AN1~AN8,开锁 信号由P3.2输出,报警和提示音由P3.7输出。BL是用于报警与声音提示的喇叭,K是继电器控制电磁线圈。软件设计 图2给出了该单片机密码锁电路的软件流程图。图中�AA1~AA8以及START、SET、SAVE是程序中的标号,是为了理解程序而专门标...

51单片机关于密码锁的毕业设计,论文
程序设计内容 (1).密码的设定,在此程序中密码是固定在程序存储器ROM中,假设预设的密码为“12345”共5位密码。(2).密码的输入问题: 由于采用两个按键来完成密码的输入,那么其中一个按键为功能键,另一个按键为数字键。在输入过程中,首先输入密码的长度,接着根据密码的长度输入密码的位数,...

电子密码锁设计基于51单片机
http:\/\/v.youku.com\/v_show\/id_XMTUwMjg3MjQyOA==.html 单片机蓝牙密码锁系统 实现功能:1、 密码锁功能\/可以修改密码, 下次开机后新密码仍然有效 2、 支持一键恢复初始密码 3、 手机蓝牙可以实现输入密码进行开锁 4、 可进行功能定制 ☆已作出的实物优酷视频演示地址:http:\/\/v.youku.com\/v_...

你有基于51单片机的电子密码锁设计的材料吗?或者哪里能找到?
若要找硬件及相关程序资料、原理图、仿真文件,你可到“谷歌”上搜索一下“基于51单片机的电子密码锁系统设计制作”,这款基于51单片机的电子密码锁系统,单片机用STC89C52RC单片机,电路简单,制作过程中不需要进行调试,支持密码掉电保存功能!密码储存于单片机内部自带的的EEPROM中,不需要外置AT24C01保存密码...

求问电子密码锁的具体详细工作原理!!!
1.2 电子锁具基本原理及组成框图 电子锁具以51系列单片机(AT89051)为核心,配合相应硬件电路,完成密码设置、存储、识别和显示、驱动电磁执行器并检测其驱动电流值、接收传感器报警信号、发送数据等功能。2. 关键技术 为确保智能密码锁的高安全性和可靠性,设计中采用了多项关键技术。2.1 线路复用技术 ...

基于单片机电子密码锁设计~
*键为取消键,#键为确认键,密码可存入单片机的ROM中(不能改密码)或存入24CXX串行E2PROM(可改密码)。键盘处理方法可以用两种,一种是在主程序里不停扫描端口检测按键消抖动后处理按键。另一种方法是键盘通过与门接到外部中断,当有键按下时会引起中断,然后在中断程序中消抖动后处理按键。经过键盘...

求高手,求帮助,c51单片机课程设计(单片机密码锁)我的邮箱530490031@qq.c...
从经济实用的角度出发,采用STC89C52单片机设计出一种具有密码设置、报警和防止多次试探密码功能的电子密码锁,通过Protues软件成功地进行了仿真。1、系统工作原理 本系统以STC89C52单片机为核心,使用4X4矩阵键盘作为数据输人方式,驱动1602显示器提示程序运行过程和*的步骤。本系统的密码判断过程如下:当使用者输...

电子密码锁设计与制作
32.电子密码锁设计 1.实验任务 根据设定好的密码,采用二个按键实现密码的输入功能,当密码输入正确之后,锁就打开,如果输入的三次的密码不正确,就锁定按键3秒钟,同时发现报警声,直到没有按键按下3种后,才打开按键锁定功能;否则在3秒钟内仍有按键按下,就重新锁定按键3秒时间并报警。2.电路...

相似回答