中国古代数学家简介

不管哪个都好啦!!

一、刘徽(古代著名数学家)

刘徽(约225年—约295年),汉族,山东滨州邹平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。

刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。

二、朱世杰(元代数学家、教育家)

朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。

此外他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。主要著作是《算学启蒙》与《四元玉鉴》。

三、杨辉(南宋著名数学家)

杨辉(生卒年不详),字谦光,汉族,钱塘(今浙江杭州)人,南宋杰出的数学家、数学教育家。

生平履历不详。曾担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带。他在总结民间乘除捷算法、“垛积术”、纵横图以及数学教育方面,均做出了重大的贡献。他是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。

还曾论证过弧矢公式,时人称为“辉术”。与秦九韶、李冶、朱世杰并称“宋元数学四大家”。

著有数学著作5种21卷,即《详解九章算法》12卷(1261),《日用算法》2卷(1262),《乘除通变本末》3卷(1274),《田亩比类乘除捷法》2卷(1275)和《续古摘奇算法》2卷(1275)(其中《详解》和《日用算法》已非完书)。

后三种合称为《杨辉算法》。朝鲜、日本等国均有译本出版,流传世界。

四、李锐 (清代数学家)

李锐,中国清代数学家。字尚之,号四香。江苏元和(今苏州)人。清乾隆三 十三年十二月八日(1769 年 1 月 15 日)生;嘉庆二十二年六月三十日(1817 年 8 月 12 日)卒。数学、天文学。

曾受业于钱大昕门下,后入阮元幕府,整理数学典籍。实际主持《畴人传》的编写工作。著有《弧矢算术细草》、《勾股算术细草》、《方程新术草》,阐发中国古代数学的精粹。还曾对多部历法进行注释和数理上的考证,著成《日法朔余强弱考》。

五、赵爽 (古代数学家)

赵爽,又名婴,字君卿,中国数学家。东汉末至三国时代吴国人。他是我国历史上著名的数学家与天文学家。生平不详,约182---250年。

据载,他研究过张衡的天文学著作《灵宪》和刘洪的《乾象历》,也提到过“算术”。他的主要贡献是约在222年深入研究了《周髀》,该书是我国最古老的天文学著作,唐初改名为《周髀算经》该书写了序言,并作了详细注释。

该书简明扼要地总结出中国古代勾股算术的深奥原理。其中一段530余字的“勾股圆方图”注文是数学史上极有价值的文献。他详细解释了《周髀算经》中勾股定理,将勾股定理表述为:“勾股各自乘,并之,为弦实。开方除之,即弦。”。

又给出了新的证明:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实。”。“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明。

温馨提示:内容为网友见解,仅供参考
第1个回答  2021-06-10

祖冲之(429年-500年),字文远,范阳郡遒县(今河北省涞水县)人,南北朝时期杰出的数学家、天文学家。

出身范阳祖氏。一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上;

首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。

人物评价:

祖冲之父子的数学研究成就汇集于他的数学专著《缀术》中。这本书极其高深,以至于“学官莫能究其深奥,故废而不理”。在唐朝官学中,《缀术》也被列为必读的十部算经之一,且需学习4年,年限为各经之首。

后来,《缀术》传至朝鲜,但10世纪以后,《缀术》渐渐在各国失传了。尽管今天已无从知道《缀术》的具体内容,但从该书在唐代官学中的学习年限及史书中相关的零星记载,我们仍可以想见其学术价值。

本回答被网友采纳
第2个回答  推荐于2016-12-01
刘 徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.

贾 宪
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。

他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。

秦九韶
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。

李冶
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。

朱世杰
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).

祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。

祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。

祖 暅
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。

杨辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。

赵 爽
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。

赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。本回答被提问者采纳
第3个回答  2021-02-07
一、刘徽(古代著名数学家)

刘徽(约225年—约295年),汉族,山东滨州邹平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。

刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。

二、朱世杰(元代数学家、教育家)

朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。

此外他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。主要著作是《算学启蒙》与《四元玉鉴》。

三、杨辉(南宋著名数学家)

杨辉(生卒年不详),字谦光,汉族,钱塘(今浙江杭州)人,南宋杰出的数学家、数学教育家。

生平履历不详。曾担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带。他在总结民间乘除捷算法、“垛积术”、纵横图以及数学教育方面,均做出了重大的贡献。他是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。

还曾论证过弧矢公式,时人称为“辉术”。与秦九韶、李冶、朱世杰并称“宋元数学四大家”。

著有数学著作5种21卷,即《详解九章算法》12卷(1261),《日用算法》2卷(1262),《乘除通变本末》3卷(1274),《田亩比类乘除捷法》2卷(1275)和《续古摘奇算法》2卷(1275)(其中《详解》和《日用算法》已非完书)。

后三种合称为《杨辉算法》。朝鲜、日本等国均有译本出版,流传世界。

四、李锐 (清代数学家)

李锐,中国清代数学家。字尚之,号四香。江苏元和(今苏州)人。清乾隆三 十三年十二月八日(1769 年 1 月 15 日)生;嘉庆二十二年六月三十日(1817 年 8 月 12 日)卒。数学、天文学。

曾受业于钱大昕门下,后入阮元幕府,整理数学典籍。实际主持《畴人传》的编写工作。著有《弧矢算术细草》、《勾股算术细草》、《方程新术草》,阐发中国古代数学的精粹。还曾对多部历法进行注释和数理上的考证,著成《日法朔余强弱考》。

五、赵爽 (古代数学家)

赵爽,又名婴,字君卿,中国数学家。东汉末至三国时代吴国人。他是我国历史上著名的数学家与天文学家。生平不详,约182---250年。

据载,他研究过张衡的天文学著作《灵宪》和刘洪的《乾象历》,也提到过“算术”。他的主要贡献是约在222年深入研究了《周髀》,该书是我国最古老的天文学著作,唐初改名为《周髀算经》该书写了序言,并作了详细注释。

该书简明扼要地总结出中国古代勾股算术的深奥原理。其中一段530余字的“勾股圆方图”注文是数学史上极有价值的文献。他详细解释了《周髀算经》中勾股定理,将勾股定理表述为:“勾股各自乘,并之,为弦实。开方除之,即弦。”。

又给出了新的证明:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实。”。“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明。贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。
秦九韶
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。
朱世杰
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).
祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。
祖 暅
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
杨辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
赵 爽
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。
赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
第4个回答  2008-05-04
祖冲之(ZǔChōngzhī ,公元429年—公元500年)是我国杰出的数学家,科学家。南北朝时期人,字文远。生于未文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。先世迁入江南,祖父掌管土木建筑,父亲学识渊博。祖冲之从小接受家传的科学知识。青年时进入华林学省,从事学术活动。一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山县东北)令、谒者仆射、长水校尉等官职。其主要贡献在数学、天文历法和机械三方面。在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了。《隋书·律历志》留下一小段关于圆周率(π)的记载,祖冲之算出π的真值在3.1415926(朒数)和3.1415927(盈数)之间,相当于精确到小数第7位,成为当时世界上最先进的成就。这一纪录直到15世纪才由阿拉伯数学家卡西打破。祖冲之还给出π的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位,在西方直到16世纪才由荷兰数学家奥托重新发现。祖冲之还和儿子祖暅一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式。在天文历法方面,祖冲之创制了《大明历》,最早将岁差引进历法;采用了391年加144个闰月的新闰周;首次精密测出交点月日数(27.21223),回归年日数(365.2428)等数据,还发明了用圭表测量冬至前后若干天的正午太阳影长以定冬至时刻的方法。在机械学方面,他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等。此外,他在音律、文学、考据方面也有造诣,他精通音律,擅长下棋,还写有小说《述异记》。是历史上少有的博学多才的人物。
为纪念这位伟大的古代科学家,人们将月球背面的一座环形山命名为“祖冲之环形山”,将小行星1888命名为“祖冲之小行星”。

贾宪,北宋人,约于1050年左右完成《黄帝九章算经细草》,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉《详解九章算法》(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。《详解九章算法》同时录有贾宪进行高次幂开方的“增乘开方法”。

贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。

贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。

他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。

秦九韶:《数书九章》

秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。

李冶:《测圆海镜》——开元术

随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。

李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。

朱世杰:《四元玉鉴》

朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)。
相似回答