典型的初一奥数题 (奥林匹克的、五道以上、题及答案) 急!急!急! 今天之内!

悬赏分够多了吧!

一、已知a=5-1,则2a3+7a2-2a-12 的值等于 .
解:0 由已知得 (a+1)2=5,所以a2+2a=4,于是 2a3+7a2-2a-12=2a3+4a2+3a2-2a-12=3a2+6a-12=0

二、如下图,第100行的第5个数是几?
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
16 17........

答案是4955

由图的左边最外层1 2 4 7 11 16 得后面的数总是比前面的数大,
而且第2个比第1个大1....第3个比第4个大2....第4个比第3个大3..第5个比第第4个大4....第6个比第5个大5..........所以可以设左边最外层中第n个数为x 则x等于〔1加2加3加……加〈n—1〉〕.......所以第100行的第1个数为〔1加2加3加……加〈100—1〉〕等于4951
所以第100行第5个数为4955

三、有甲,乙两个多边形,甲多边形的边数及内角和分别是乙多边形的边数及内角和的2倍和4倍,能确定它们各是几边形吗?

设甲为2x边形,乙为x边形(2x-2)*180=4(x-2)*180解得x=3所以甲为’六边形,乙为三角形

四、用100元买100支笔,铅笔每支3元,圆珠笔每支5元,红笔5支1元,每 种笔都要有,问每种笔的数量

设铅笔,圆珠笔,红笔分别为x,y,z支 x+y+z=100 3x+5y+(1/5)z=100 x=200-2.4z y=1,4z-100 z小于250/3,大于500/7 由x,y,z都是正整数得 z=80或75 x=8或20,y=12或5

五、某火车站的钟楼上装有一电子报时钟,在钟面的边界上每一分钟的刻度处都装有一只小彩灯,晚上九点三十五分二十秒是,时针与分针所夹的角a内装有多少只小彩灯??

九点三十五分二十秒时,显然分针在35与36之间,此时计算时针的位置:分针走60格,时针走5格,因此,此时时针走了(35.3分(即35分20秒)/60)*5=2.94格,所以时针在47与48之间,所以夹角内共有彩灯12个

六、
一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将个位与百位上的数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数。

法一: 设这个三位数是xyz,则x=y+1,z=3y-2,所以y=x-1,z=3x-5。 这个三位数是100×x+10×y+z=100×x+10×(x-1)+3x-5=113x-15 若将个位与百位上的数字顺序颠倒后,新的三位数是zyx,即100×z+10×y+x=100×(3x-5)+10×(x-1)+x=311x-510 两个三位数的和是1171,所以,113x-15+311x-510=1171。解得x=4。 所以,y=x-1=3,z=3x-5=7。 所以这个三位数是437.
法二: 解:设百位是100(X+1) , 十位是 10X , 个位是3X-2 100(X+1)+10X+(3X-2)+100(3X-2)+10X+(X+1)=1171 X=3 百位:100(X+1)=100(3+1)=400 十位:10X=3 x 10=30 个位:3X-2=3 x 3 -2=7 三位数:400+30+7=437

参考资料:百度文库

温馨提示:内容为网友见解,仅供参考
无其他回答

给我多一点奥数题,最好是关于代数式的,初一下学期的
20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个...

五年级奥数题 关于末尾几个零
末尾要有5个0,乘积的因子必然要有5个2和5个5,1175有2个因子5,215有1个因子5,48有4个因子2.那么还缺2个5和1个2,所以最小应该填5*5*2=50

相似回答