数学高考

谁有数学高考题 那种需要用到 不等式放缩的题目
要最最最最最最最经典的 无论多少照单全收!!!!!!!!@
啊啊啊啊啊啊啊啊啊啊
我需要啊!!!!!!!!!!!!!!!
要很难很经典的那种,,,,,其他的没什么意义
谢谢各位了
谢谢
此致敬礼!
3楼的我看不懂,我现在要的是题型

(Ⅲ)范例分析

b)∈M,且对M中的其它元素(c,d),总有c≥a,则a=____.
分析:读懂并能揭示问题中的数学实质,将是解决该问题的突破口.怎样理解“对M中的其它元素(c,d),总有c≥a”?M中的元素又有什么特点?
解:依题可知,本题等价于求函数x=f(y)=(y+3)•|y-1|+(y+3)

(2)当1≤y≤3时,
所以当y=1时,xmin=4.

说明:题设条件中出现集合的形式,因此要认清集合元素的本质属性,然后结合条件,揭示其数学实质.即求集合M中的元素满足关系式

例2.解关于 的不等式:
分析:本例主要复习含绝对值不等式的解法,分类讨论的思想。本题的关键不是对参数 进行讨论,而是去绝对值时必须对末知数进行讨论,得到两个不等式组,最后对两个不等式组的解集求并集,得出原不等式的解集。
解:当


例3. 己知三个不等式:① ② ③
(1)若同时满足①、②的 值也满足③,求m的取值范围;
(2)若满足的③ 值至少满足①和②中的一个,求m的取值范围。
分析:本例主要综合复习整式、分式不等式和含绝对值不等的解法,以及数形结合思想,解本题的关键弄清同时满足①、②的 值的满足③的充要条件是:③对应的方程的两根分别在 和 内。不等式和与之对应的方程及函数图象有着密不可分的内在联系,在解决问题的过程中,要适时地联系它们之间的内在关系。
解:记①的解集为A,②的解集为B,③的解集为C。
解①得A=(-1,3);解②得B=
(1) 因同时满足①、②的 值也满足③,A B C
设 ,由 的图象可知:方程的小根小于0,大根大于或等于3时,即可满足
(2) 因满足③的 值至少满足①和②中的一个, 因
此 小根大于或等于-1,大根小于或等于4,因而

说明:同时满足①②的x值满足③的充要条件是:③对应的方程2x +mx-1=0的两根分别在(-∞,0)和[3,+∞)内,因此有f(0)<0且f(3)≤0,否则不能对A∩B中的所有x值满足条件.不等式和与之对应的方程及图象是有着密不可分的内在联系的,在解决问题的过程中,要适时地联系它们之间的内在关系.

例4.已知对于自然数a,存在一个以a为首项系数的整系数二次三项式,它有两个小于1的正根,求证:a≥5.
分析:回忆二次函数的几种特殊形式.设f(x)=ax +bx+c(a≠0).①
顶点式.f(x)=a(x-x ) +f(x )(a≠0).这里(x ,f(x ))是二次函数的顶点,x =

))、(x ,f(x ))、(x ,f(x ))是二次函数图象上的不同三点,则系数a,b,c可由

证明:设二次三项式为:f(x)=a(x-x )(x-x ),a∈N.
依题意知:0<x <1,0<x <1,且x ≠x .于是有
f(0)>0,f(1)>0.
又f(x)=ax -a(x +x )x+ax x 为整系数二次三项式,
所以f(0)=ax x 、f(1)=a•(1-x )(1-x )为正整数.故f(0)≥1,f(1)≥1.
从而 f(0)•f(1)≥1. ①
另一方面,

且由x ≠x 知等号不同时成立,所以

由①、②得,a >16.又a∈N,所以a≥5.
说明:二次函数是一类被广泛应用的函数,用它构造的不等式证明问题,往往比较灵活.根据题设条件恰当选择二次函数的表达形式,是解决这类问题的关键.
例5.设等差数列{a }的首项a1>0且Sm=Sn(m≠n).问:它的前多少项的和最大?
分析:要求前n项和的最大值,首先要分析此数列是递增数列还是递减数列.
解:设等差数列{a }的公差为d,由Sm=Sn得

ak≥0,且ak+1<0.

(k∈N).

说明:诸多数学问题可归结为解某一不等式(组).正确列出不等式(组),并分析其解在具体问题的意义,是得到合理结论的关键.
例6.若二次函数y=f(x)的图象经过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围.
分析:要求f(-2)的取值范围,只需找到含人f(-2)的不等式(组).由于y=f(x)是二次函数,所以应先将f(x)的表达形式写出来.即可求得f(-2)的表达式,然后依题设条件列出含有f(-2)的不等式(组),即可求解.
解:因为y=f(x)的图象经过原点,所以可设y=f(x)=ax2+bx.于是

解法一(利用基本不等式的性质)
不等式组(Ⅰ)变形得

(Ⅰ)所以f(-2)的取值范围是[6,10].
解法二(数形结合)

建立直角坐标系aob,作出不等式组(Ⅰ)所表示的区域,如图6中的阴影部分.因为f(-2)=4a-2b,所以4a-2b-f(-2)=0表示斜率为2的直线系.如图6,当直线4a-2b-f(-2)=0过点A(2,1),B(3,1)时,分别取得f(-2)的最小值6,最大值10.即f(-2)的取值范围是:6≤f(-2)≤10.
解法三(利用方程的思想)

又f(-2)=4a-2b=3f(-1)+f(1),而
1≤f(-1)≤2,3≤f(1)≤4, ①
所以 3≤3f(-1)≤6. ②
①+②得4≤3f(-1)+f(1)≤10,即6≤f(-2)≤10.
说明:(1)在解不等式时,要求作同解变形.要避免出现以下一种错解:

2b,8≤4a≤12,-3≤-2b≤-1,所以 5≤f(-2)≤11.
(2)对这类问题的求解关键一步是,找到f(-2)的数学结构,然后依其数学结构特征,揭示其代数的、几何的本质,利用不等式的基本性质、数形结合、方程等数学思想方法,从不同角度去解决同一问题.若长期这样思考问题,数学的素养一定会迅速提高.

例7.(2002 江苏)己知 ,
(1)
(2) ,证明:对任意 , 的充要条件是 ;
(3) 讨论:对任意 , 的充要条件。
证明:(1)依题意,对任意 ,都有

(2)充分性:

必要性:对任意

(3)

而当

例8.若a>0,b>0,a3+b3=2.求证a+b≤2,ab≤1.
分析:由条件a3+b3=2及待证的结论a+b≤2的结构入手,联想它们之间的内在联系,不妨用作差比较法或均值不等式或构造方程等等方法,架起沟通二者的“桥梁”.
证法一 (作差比较法)
因为a>0,b>0,a3+b3=2,所以
(a+b)3-23=a3+b3+3a2b+3ab2-8=3a2b+3ab2-6
=3[ab(a+b)-2]=3[ab(a+b)-(a3+b3)]=-3(a+b)(a-b)2≤0,
即 (a+b)3≤23.

证法二 (平均值不等式—综合法)
因为a>0,b>0,a3+b3=2,所以

所以a+b≤2,ab≤1.
说明:充分发挥“1”的作用,使其证明路径显得格外简捷、漂亮.
证法三 (构造方程)
设a,b为方程x2-mx+n=0的两根.则

因为a>0,b>0,所以m>0,n>0且Δ=m2-4n≥0.①
因此2=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m[m2-3n],所以

所以a+b≤2.
由2≥m得4≥m2,又m2≥4n,所以4≥4n,即n≤1.所以 ab≤1.
说明:认真观察不等式的结构,从中发现与已学知识的内在联系,就能较顺利地找到解决问题的切入点.
证法四 (恰当的配凑)
因为a>0,b>0,a3+b3=2,所以
2=a3+b3=(a+b)(a2+b2-ab)≥(a+b)(2ab-ab)=ab(a+b),
于是有6≥3ab(a+b),从而
8≥3ab(a+b)+2=3a2b+3ab2+a3+b3=(a+b)3,
所以a+b≤2.(以下略)

即a+b≤2.(以下略)
证法六 (反证法)
假设a+b>2,则
a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]>2(22-3ab).
因为a3+b3=2,所以2>2(4-3ab),因此ab>1. ①
另一方面,2=a3+b3=(a+b)(a2+b2-ab)≥(a+b)(2ab-ab)=(a+b)•ab>2ab,
所以ab<1. ②
于是①与②矛盾,故a+b≤2.(以下略)
说明:此题用了六种不同的方法证明,这几种证法都是证明不等式的常用方法.

例9.设函数f(x)=ax2+bx+c的图象与两直线y=x,y=-x,均不相

分析:因为x∈R,故|f(x)|的最小值若存在,则最小值由顶点确定,故设f(x)=a(x-x0)2+f(x0).
证明:由题意知,a≠0.设f(x)=a(x-x0)2+f(x0),则
又二次方程ax2+bx+c=±x无实根,故
Δ1=(b+1)2-4ac<0,
Δ2=(b-1)2-4ac<0.
所以(b+1)2+(b-1)2-8ac<0,即2b2+2-8ac<0,即
b2-4ac<-1,所以|b2-4ac|>1.

说明:从上述几个例子可以看出,在证明与二次函数有关的不等式问题时,如果针对题设条件,合理采取二次函数的不同形式,那么我们就找到了一种有效的证明途径.

例10.(2002理)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同。为了保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?
解:设2001年末的汽车保有量为 ,以后每年末的汽车保有量依次为 ,每年新增汽车 万辆。
由题意得

例11.已知奇函数
知函数

分析:这是一道比较综合的问题,考查很多函数知识,通过恰当换元,使问题转化为二次函数在闭区间上的最值问题。


要使
10 当

30当
综上:

例12.如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状。
(1)若最大拱高h为6米,则隧道设计的拱宽 是多少?
(2)若最大拱高h不小于6米,则应如何设计拱高h和拱宽 ,才能使半个椭圆形隧道的土方工程最小?
(半个椭圆的面积公式为s= 柱体体积为:底面积乘以高, , 本题结果均精确到0.1米)
分析:本题为2003年上海高考题,考查运用几何、不等式等解决应用题的能力及运算能力。
解:1)建立如图所示直角坐标系,则P(11,4.5)
椭圆方程为:
将b=h=6与点P坐标代入椭圆方程得
故隧道拱宽约为33.3米
2)由椭圆方程

故当拱高约为6.4米,拱宽约为31.1米时,土方工程量最小.

例13.已知n∈N,n>1.求证
分析:虽然待证不等式是关于自然数的命题,但不一定选用数学归纳法,观其“形”,它具有较好规律,因此不妨采用构造数列的方法进行解.



说明:因为数列是特殊的函数,所以可以因问题的数学结构,利用函数的思想解决.

例14.已知函数

分析:本例主要复习函数、不等式的基础知识,绝对值不等式及函数不等式的证明技巧。基本思路先将函数不等式转化为代数不等式,利用绝对值不等式的性质及函数的性质。证明(1)再利用二项展开式及基本不等式的证明(2)。
证明:(1)
当且仅当 时,上式取等号。

(2) 时,结论显然成立
当 时,

例15.(2001年全国理)己知
(1)
(2)
证明:(1)
同理

(2)由二项式定理有

因此

四、强化训练
1.已知非负实数 , 满足 且 ,则 的最大值是( )
A. B. C. D.
2.已知命题p:函数 的值域为R,命题q:函数
是减函数。若p或q为真命题,p且q为假命题,则实数a的取值范围是 ( )
A.a≤1 B.a<2 C.1<a<2 D.a≤1或a≥2
3. 解关于 的不等式 >0
4.求a,b的值,使得关于x的不等式ax2+bx+a2-1≤0的解集分别是:
(1)[-1,2];(2)(-∞,-1]∪[2,+∞);(3){2};(4)[-1,+∞).
5. 解关于 的不等式
6.(2002北京文)数列 由下列条件确定:
(1)证明:对于 ,
(2)证明:对于 .
7.设P=(log2x) +(t-2)log2x-t+1,若t在区间[-2,2]上变动时,P恒为正值,试求x的变化范围.
8.已知数列 中,
b1=1,点P(bn,bn+1)在直线x-y+2=0上。
Ⅰ)求数列
Ⅱ)设 的前n项和为Bn, 试比较 。
Ⅲ)设Tn=
五、参考答案
1.解:画出图象,由线性规划知识可得,选D
2.解:命题p为真时,即真数部分能够取到大于零的所有实数,故二次函数 的判别式 ,从而 ;命题q为真时, 。
若p或q为真命题,p且q为假命题,故p和q中只有一个是真命题,一个是假命题。
若p为真,q为假时,无解;若p为假,q为真时,结果为1<a<2,故选C.
3.分析:本题主要复习分式不等式的解法、分类讨论的思想及利用序轴标根法解不等式的基本步骤。本题的关键是对分母分解因式,将原不等式等价转化为
和比较 与 及3的大小,定出分类方法。
解:原不等式化为:
(1) 当 时,由图1知不等式的解集为
(2) 当
(3) 当
4.分析:方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互交通.
解(1) 由题意可知,a>0且-1,2是方程ax2+bx+a2-1≤0的根,所以

(3)由题意知,2是方程ax2+bx+a2-1=0的根,所以
4a+2b+a2-1=0. ①
又{2}是不等式ax2+bx+a2-1≤0的解集,所以

(4)由题意知,a=0.b<0,且-1是方程bx+a2-1=0的根,即-b+a2-1=0,所以
a=0,b=-1.
说明:二次函数与一元二次方程、一元二次不等式之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间相互联系相互渗透,并在一定条件下相互转换。
5.分析:在不等式的求解中,换元法和图解法是常用的技巧,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,数形结合,则可将不等式的解化归为直观,形象的图象关系,对含参数的不等式,运用图解法,还可以使得分类标准更加明晰。
解:设 ,原不等式化为 ,在同一坐标系中作出两函数图象
故(1)当
(2)
(3)当 时,原不等式的解集为φ
综上所述,当 时,解集为 );当 时,解集为
时,解集为φ。

6.证明:(1)

(2)当 时,
=
7.分析:要求x的变化范围,显然要依题设条件寻找含x的不等式(组),这就需要认真思考条件中“t在区间[-2,2]上变动时,P恒为正值.”的含义.你是怎样理解的?如果继续思考有困难、请换一个角度去思考.在所给数学结构中,右式含两个字母x、t,t是在给定区间内变化的,而求的是x的取值范围,能想到什么?
解:设P=f(t)=(log2x-1)t+log22x-2log2x+1.因为 P=f(t)在top直角坐标系内是一直线,所以t在区间[-2,2]上变动时,P恒为正值的充要条件

解得log2x>3或log2x<-1.

说明:改变看问题的角度,构造关于t的一次函数,灵活运用函数的思想,使难解的问题转化为熟悉的问题.
8.分析:本题主要复习数列通项、求和及不等式的有关知识。
略解:Ⅰ)
Ⅱ)Bn=1+3+5+…+(2n-1)=n2

Ⅲ)Tn= ①

①-②得
温馨提示:内容为网友见解,仅供参考
第1个回答  2008-04-25
晕 没必要找很多题 关键是做一个能消化一个
比较建议你挑几个做过的经典的 然后反复看形成一种思路
这应该比作题有效的本回答被网友采纳
第2个回答  2008-04-25
.......中学教才全解里的题很好建议看看

高考数学考什么
高考数学旨在评价学生数学素养与解决实践问题的能力。考试主要分为数学分析与应用数学两大部分。数学分析涵盖微积分、线性代数、常微分方程等核心内容;应用数学则涉及数值分析、概率统计、运筹学等应用性知识。考试难度较高,强调考察学生扎实的数学基础和解决实际问题的能力。具体而言,数学分析部分侧重于微积分...

高考数学考哪些知识点
高考数学考察的知识点全面,涵盖了基础的函数性质,深入的导数概念,几何学的解析几何,以及三角学的三角函数及其变换,数列理论,极限概念,以及概率与统计学的基本知识。在函数性质的学习中,考生需要掌握函数定义域与值域,以及函数的单调性,理解函数的性质与图像之间的联系,为后续学习打下坚实基础。导数...

高考数学考哪些
高考数学考试分为数学一和数学二两部分。数学一侧重基础数学知识与运算能力,包括代数、几何和数学计算三大领域。具体涉及方程与不等式、函数与导数、平面向量、立体几何等内容。数学二则深入和复杂,主要测试数学分析与解题技巧,包含数列与数学归纳法、三角函数与解三角形、数学推理与证明等。数学二中还涉及概...

高考数学满分是多少分?
高考数学总分值设定为150分,及格线则在90分左右,达到120分则可视为优秀水平,而140分以上则可称之为优异。一般学生达到120分以上,便可以认为是高分水平,对于成绩优秀的考生而言,满分或接近满分(140分以上)是常见的成绩,甚至130分以上的成绩也并不少见。在高考数学中取得高分,需要具备以下条件:扎...

高考数学如何考120分? - 知乎
高中数学大题如何高效得分?以2020年全国三卷理科数学为例,以下为您揭秘高得分技巧。对于数列类问题,重点在于熟悉求通项公式的多种方法,如Sn - Sn-1=an、累加法、累乘法、待定系数法等。平时多练习,考试时思路自然清晰。技巧包括:标记题目条件、写出根据已知信息的推理过程。立体几何问题通常包括证明...

新高考数学大题6大题型有哪些
新高考数学大题题型一:三角函数、向量、解三角形 此部分聚焦于三角函数的基本图象、性质、三角恒等变换、和与差公式以及平面向量的工具性应用。解三角形通常通过正弦定理和余弦定理解决,强调知识间的交汇与结合,如将三角函数与解三角形有机融合于综合题目中。三角恒等变换下的性质探究与图形图像的变换是...

高考数学考哪些内容
高考数学考试的主要内容涵盖代数、几何、概率与统计三大模块。其中,代数部分重点考察方程与不等式的解法、函数性质、数列规律等,目的在于检测学生对数学基础理论的理解与运用能力。几何部分则细分为平面几何与空间几何两部分,着重评估学生对几何图形性质的理解、空间图形投影的掌握程度。概率与统计模块则侧重...

高考数学应如何安排答题时间
选择题在三十到四十分钟之间。不要超过四十五分钟,如果数学不是十分拔尖的话,最好不要小于二十五分钟,最后两道题的时间适量多一些。填空题在二十五到三十分钟,不要超过四十分钟,一般在最后或其他位置会有1道拔高或比较麻烦的题,要有心理准备,留出时间。解答题会有50到65分钟,最少也有三十五分钟。

【高考数学】3.10 tanx=tany的处理
在处理高考数学中的tanx=tany问题时,秒杀方法通常基于两个关键点:一是在于识别终边重合的情况,二是注意终边关于原点的对称性。这两点是解决此类问题的核心。在公式表达中,终边重合意味着角度x和y在单位圆上的位置相同,而关于原点对称则表示一个角度和它的负数或正数角度在单位圆上位置相对,但位于圆...

新高考数学分文理科吗
数学分文理科,这是长期以来高考的制度安排。通常情况下,文科数学内容相对简单,注重应用,而理科数学则难度系数较大,更侧重于理论和逻辑推理。自从高考制度实行以来,这一做法便得到了广泛实施,新高考也不例外。在文理科数学的设置上,主要目的在于适应不同学生的学习特点和未来职业发展方向。文科数学着重...

相似回答