求助:热电偶不准的因素?

新装的热电偶和显示仪,装完后温度开始上升(被测温度是470度),上升到440度左右就开始下降,一直到几十度左右,热电偶换N次了,智能显示也换成普通的,都不行,我想请问各位帮忙分析:补偿导线的压降为0。6豪伏,补偿导线应怎样采用?补偿导线穿铁管行不行?热电偶与被测物之间的防护套空间间隙为1-2厘米,温差有多少?热电偶输出电压与温度的对照表可否提供?谢谢各位,小弟万分感激!
谢谢第一位,不过我的补偿导线有7米的,还有20米的,不过都不行,测量介质是液体(液体锌420度-480度),不过热电偶有防护套的,因为锌的腐蚀性很强是用纯铁做的,套与热电偶的间隙1-2厘米。第二位老兄可否来点经验之谈,小弟是诚恳请教,不要抄书啊!

1. 插入深度的影响

(1)测温点的选择

热电偶安装位置,即测温点的选择是最重要的。测温点的位置,对于生产工艺过程而言,一定要具有典型性、代表性,否则将失去测量与控制的意义。

(2)插入深度

热电偶插入被测场所时,沿着传感器的长度方向将产生热流。当环境温度低时就会有热损失,致使热电偶与被测对象的温度不一致而产生测温误差。总之,由热传导而引起的误差,与插入深度有关。而插入深度又与保护管材质有关。金属保护管因其导热性能好,其插入深度应深一些(约为直径的15~20倍),陶瓷材料绝热性能好,可插入浅一些(约为直径的10~15倍)。对于工程测温,其插入深度还与测量对象是静止或流动等状态有关,如流动的液体或高速气流温度的测量,将不受上述限制,插入可浅一些,具体数值应由实验确定。

2. 响应时间的影响

接触法测温的基本原理是测温元件要与被测对象达到热平衡。因此,在测温时需保持一定时间,才能使两者达到热平衡。而保持时间的长短,同测温元件的热响应时间有关。而热响应时间主要取决于传感器结构及测量条件,差别极大。对于气体介质,尤其是静止气体,至少应保持30min以上才能达到平衡;对于液体而言,最快也要在5min以上。

对于温度不断变化的被测场所,尤其是瞬间变化过程,全过程仅1s,则要求传感器的响应时间在毫秒级。因此,普通的温度传感器不仅跟不上被测对象的温度变化速度出现滞后,而且也会因达不到热平衡而产生测量误差。最好选择响应快的传感器。对热电偶而言除保护管影响外,热电偶的测量端直径也是其主要因素,即偶丝越细,测量端直径越小,其热响应时间越短。测温元件热响应误差可通过下式确定。

Δθ=Δθ0exp(-t/t) (1)

式中

Δθ——在t时刻,测温元件引起的误差,K或℃

Δθ0——“t=0”时刻,测温元件引起的误差,K或℃

t——测量时间,s

τ——时间常数,s

ε——自然对数的底(2.718)

因此,当t=τ时,则Δθ=Δθ0/e

即为0.368,

如果当t=2τ时,则Δθ=Δθ0/e2

即为0.135。

当被测对象温度以一定速度α(k/s或℃/s)上升或下降时,经过足够时间后,所产生的响应误差可用下式表示:

Δθ∞=-ατ (2)

式中

Δθ∞—经过足够时间后,测温元件引起的误差

由式(2)可以看出,响应误差与时间常数(τ)成正比。为了提高检定效率许多企业采用自动检定装置,对入厂热电偶进行检定,但是,该装置也并非十分完善。二汽变速箱厂热处理车间就发现如果在400℃点的恒温时间不够,达不到热平衡,就容易发生误判。

3. 热辐射的影响

插入炉内用于测温的热电偶,将被高温物体发出的热辐射加热。假定炉内气体是透明的,而且,热电偶与炉壁的温差较大时,将因能量交换而产生测温误差。

在单位时间内,两者交换的辐射能为P,可用下式表示:

P=σε(Tw4-Tt4) (3)

式中

σ——斯忒藩—波尔兹常数

ε——发射率

Tt——热电偶的温度, K

Tw——炉壁的温度, K

在单位时间内,热电偶同周围的气体(温度为T),通过对流及热传导也将发生热量交换的能量为P'

P'=αA(T-Tt) (4)

式中α——热导率

A——热电偶的表面积

在正常状态下,P=P',其误差为:

Tt-T=σε(Tt4-Tw4)/ αA (5)

对于单位面积而言其误差为

Tt-T=σε(Tt4-Tw4)/ α (6)

因此,为减少热辐射误差,应增大热传导,并使炉壁温度Tw尽可能接近热电偶温度Tt。另外,在安装时还应注意:热电偶安装位置应尽可能避开从固体发出的热辐射,使其不能辐射到热电偶表面;热电偶最好带有热辐射遮蔽套。

4. 热阻抗增加的影响

在高温下使用的热电偶,如果被测介质为气态,那么保护管表面沉积的灰尘等将烧熔在表面上,使保护管的热阻抗增大;如果被测介质是熔体,在使用过程中将有炉渣沉积,不仅增加了热电偶的响应时间,而且还使指示温度偏低。因此,除了定期检定外,为了减少误差,经常抽检也是必要的。例如,进口铜熔炼炉,不仅安装有连续测温热电偶,还配备消耗型热电偶测温装置,用于及时校准连续测温用热电偶的准确度。

三 热电偶测温应注意的事项

1. 热电偶丝不均质影响

(1)热电偶材质本身不均质

热电偶在计量室检定时,按规程要求,插入检定炉内的深度只有300mm。因此每支热电偶的检定结果,确切地说只能体现或主要体现出从测量端开始300mm长偶丝的热电行为,然而当热电偶较长时,则大部分偶丝处于高温区,如果热电偶丝是均质的,那么依据均质回路定则,测量结果与长度无关。然而,热电偶丝并非均质,尤其是廉金属热电偶丝其均质性较差,又处于具有温度梯度的场合,那么其局部将产生热电动势,该电动势称为寄生电势。由寄生电势引起的误差称为不均质误差。

在现有贵金属、廉金属热电偶检定规程中,对热电偶的不均质尚未作出规定,只有在热电偶丝材标准中,对热电偶丝的不均匀性有一定要求。对廉金属热电偶采用首尾检定法求出不均匀热电动势。正规热电偶丝材生产厂,均按国家标准要求,生产出不均匀热电动势符合要求的产品。

(2)热电偶丝经使用后产生的不均质

对于新制热电偶,即使是不均匀热电动势能满足要求,但是,反复加工、弯曲致使热电偶产生加工畸变,也将失去均质性;且使用中热电偶长期处于高温下也会因偶丝的劣化而引起热电动势变化,如插入工业炉中的热电偶,将沿偶丝长度方向发生劣化,并随温度增高,劣化增强,当劣化的部分处于具有温度梯度的场所,也将产生寄生电动势叠加在总热电动势中而出现测量误差。

作者在实践中发现有的热电偶经计量部门检定合格的产品(多为廉金属热电偶)到现场使用时却不合格,再返回到计量部门检定仍然合格,其中主要原因是偶丝不均质引起的。生产热电偶的技术人员都切身体会到,热电偶的不合格率也随其长度的增加而增加,皆是受热电偶丝材不均质的影响。总之,由不均质即寄生电动势引起的误差,取决于热电偶丝自身的不均质程度及温度梯度的大小,对其定量极其困难。

2. 铠装热电偶的分流误差

(1)分流误差

瓦轴集团渗碳炉用铠装热电偶,仅使用一周就不准了。为探讨原因,作者曾到现场考察,并未发现异常,且从炉子上取下来经计量室检定结果合格。那么问题何在呢?最后,根据该支热电偶的现场安装特点,经研究发现,上述问题是铠装热电偶的分流误差造成的。

所谓分流误差即用铠装热电偶测量炉温时,当热电偶中间部位有超过800℃的温度分布存在时,因其绝缘电阻下降,热电偶示值出现异常现象。依据均质回路定则,用热电偶测温只与测量端与参考端两端温度有关,与中间温度分布无关。但因铠装热电偶绝缘物是粉末状MgO,温度每升高100℃,其绝缘电阻下降一个数量级,当中间部位温度较高时,必定有漏电流产生,使在热电偶输出电势中有分流误差出现。

(2)分流误差产生的条件

将铠装热电偶水平插入炉内,其规格及实验条件为:直径Φ4.8mm,长度为25m,中间部位加热带的长度为20m,温度为1000℃。本次实验中,热电偶的测量端与中间部位温差为200℃。如果测量端温度高于中间部位,则产生负误差;相反,则产生正误差。如果两者的温差为200℃,那么,分流误差约为100℃。这是绝对不能忽视的,分流误差的产生条件与铠装热电偶种类和直径等因素有关,见表。

3. 分流误差的影响因素及对策

高温下铠装热电偶产生分流误差的现象,正在引起人们的重视,因此有必要了解分流误差的影响因素,并采取适当对策以减少或消除分流误差的影响。

(1)铠装热电偶直径

对于长度为9m的K型铠装热电偶(MgO绝缘),只将热电偶中间部位加热。实验结果表明:分流误差的大小与其直径的平方根成反比(直径过细,不遵守此规律),即直径越细,分流误差越大。

当中间部位温度高于800℃时,对于Φ3.2mm铠装热电偶将产生分流误差。但对于Φ6.4mm及Φ8mm铠装热电偶,当中间部位的温度为900℃时,仍未发现分流误差。对于Φ6.4mm(热电极丝直径为Φ1.4mm)与Φ8mm(热电极丝直径为Φ2.0mm)的铠装热电偶,当中间部位温度为1100℃时,直径为Φ8mm的铠装热电偶产生的分流误差仅为Φ6.4mm的一半。此数值(50%)近似于两种铠装热电偶电极丝直径的平方比(1.42/2.02),而电极丝直径平方比,即为电极丝的电阻比。因此,为了减少分流误差,应尽可能选用粗直径的铠装热电偶。

(2)中间部位的温度

如中间部位的温度超过800℃,有可能产生分流误差,其大小将随温度的升高呈指数关系增大。因此除测量端外,其他部位应尽可能避免超过800℃。

当中间部位加热带温度高于800℃时,其加热带的长度越长,距离测量端越远,分流误差越大。因此,应尽可能缩短加热带长度,且不要在远离测量端处加热,以减少分流误差。

(3)热电偶丝的电阻

当铠装热电偶的直径相同时,分流误差将随热电偶丝的电阻增大而增加。因此,采用电阻小的热电偶丝更好。例如:直径相同的S型铠装热电偶同K型热电偶相比,其分流误差减少40%。因此,可采用S型热电偶测量炉内温场分布,费用虽高,但较准确。

(4)绝缘电阻

高温下氧化物电阻率将随温度升高呈指数降低,分流误差大小主要取决于高温部分的绝缘性能,绝缘电阻越低,越容易产生分流误差。当绝缘电阻增加10倍或减少至1/10时,其分流误差也随之减少至1/10或增大10倍。为减少分流误差,应尽可能采用直径粗的铠装热电偶,增加绝缘层厚度。如上述措施无效时,只好采用装配式热电偶。

4. 短程有序结构变化(K状态)的影响

K型热电偶在250~600℃温度范围内使用时,由于其显微结构发生变化,形成短程有序结构,因此将影响热电势值而产生误差,这就是所谓K状态。它是Ni-Cr合金特有的晶格变化,当Cr含量在5~30%范围内存在着原子晶格的有序→无序转变由此而引起的误差,因Cr含量及温度的不同而变化。将K型热电偶从300℃加热至800℃,每50℃取一点,测量该点电势。在450℃时偏差最大可达4℃,在350~600℃范围内,均为正偏差。由于K状态的存在,使K型热电偶在升温或降温检定结果不一致,故在廉金属热电偶检定规程中明文规定检定顺序:由低温向高温逐点升温检定;而且在400℃检定点,不仅传热效果不佳,难以达到热平衡,又恰好处于K状态误差最大范围。因此,对该点判定合格与否时应很慎重。

Ni-Cr合金短程有序结构变化的现象,不仅存在于K型,而且在E型热电偶正极中也有此现象,但作为变化量E型热电偶仅为K型的2/3。总之,K状态与温度、时间有关,当温度分布或热电偶位置变化时,其偏差也会发生很大变化,故难以对偏差大小作出准确评价。

5. 使用气氛的影响

(1)选择性氧化

对于含Fe的Ni-Cr合金,如氧分压低于特定值,则同O2亲和力大的Cr将发生选择性氧化,这是Ni-Cr合金特有的晶界氧化。如用显微镜观察外表面氧化层,可看到绿色析出物,这种现象通常称为“绿蚀”。尤其是当温度在800~1050℃范围内,体系内又含有CO、H2等还原性气体时,K型热电偶的正极更容易发生选择性氧化。这种因Cr含量降低而引起热电势偏低,已成为K型热电偶在热处理行业长期使用的限制因素。

如采用的气体很纯,且系统中不含氧,可延长热电偶使用寿命;可如热电偶丝表面有氧化层时,仍可为Cr的选择性氧化提供足够的氧。因此,在非氧化性气氛中使用时,应采用干净、抛光的偶丝。同时,应尽可能避免在带有微量氧的惰性气体或氧分压很低的空气中使用。当保护管长度与直径较大时(即保护管很细),由于空气循环不良,形成缺氧状态,其残余的少量氧仍可为Cr的选择性氧化提供条件。

(2)选择性氧化的对策

为防止或减缓K型热电偶因选择性氧化而引起劣化,除在材质方面加以改善外,还应在热电偶结构上采取相应对策:(a)选择对氧亲和力较Cr更强的金属作为吸气剂,封入保护管内,防止Cr发生选择性氧化,也可采用增加保护管直径或吹气的方法增加氧含量。(b)装配式热电偶实体化。作者开发的专利产品—实体型渗碳炉用热电偶,即开发出具有密封结构的装配式热电偶,可防止Cr发生选择性氧化,经瓦轴集团、一汽、二汽、易普森工业炉、沈重、沈齿、钱江摩托等十几家企业多年使用证明,此方案有效。使用寿命在12个月以上,用户很满意。

(3)使用气氛的影响

热电偶的稳定性,因使用温度、气氛不同,对同一种传感器,如K型热电偶的最高使用温度也因直径不同而变化,直径相同的K型热电偶也因结构的不同,其稳定性也有很大差异。在选择热电偶时,必须针对使用条件考虑:常用温度及最高使用温度;氧化还原等使用气氛;抗振动性能。

对于装配式热电偶而言,气氛的影响,首先取决于保护管材质及热电偶结构,因此,熟悉、掌握各种保护管材料的物理、化学性能是很必要的。例如:在粉末冶金行业中,常用钼管作为热电偶保护管,在1600℃的H2气氛下,使用效果较好。然而,钼管在氧化性气氛下,很短时间就因氧化而蚀损。其次,应根据使用气氛,选择合适的热电偶,在1300℃以上的氧化性气氛中,选择铂铑热电偶,在还原性、真空条件下采用钨铼热电偶较好。

对于K型热电偶,适于在空气、O2等气氛中工作,但在H2气氛中使用时,其表面被H2还原,短时间无影响,如长时间暴露在H2中,在加速还原同时,将使偶丝发生晶粒长大而断线;在CO或煤气等还原性气氛中,其劣化将显著加快而超差。

对于铠装热电偶,氢原子半径很小,易透过外套进入其内部,同样也将加速劣化,致使热电势值大幅度降低。

(4)绝缘电阻的影响

热电偶用绝缘物,在高温下,其绝缘电阻随温度升高而急骤降低,因此,将有漏电流产生,该电流通过绝缘电阻已经下降的绝缘物流入仪表,使仪表指示不稳或产生测量误差,也可能发生记录仪乱打点的现象。

四 热电偶劣化与使用寿命

1. 热电偶的劣化

热电偶的使用寿命与其劣化有关,所谓热电偶的劣化,即热电偶经使用后,出现老化变质的现象。由金属或合金构成的热电偶,在高温下其内部晶粒要逐渐长大。同时合金中含有少量杂质,其位置或形状也将发生变化,而且,对周围环境中的还原或氧化性气体也要发生反应。伴随上述变化,热电偶的热电动势也将极其敏感地发生变化。因此热电偶的劣化现象是不可避免的。

2. 热电偶的使用寿命

热电偶的劣化是一个量变过程,对其定量很困难,将随热电偶的种类、直径、使用温度、气氛、时间的不同而变化。热电偶的使用寿命是指热电偶劣化发展到超过允许误差,甚至断线不能使用的时间。

(1)装配式热电偶的寿命

我国标准中仅对热电偶的稳定性有要求。即规定在某一温度下经200h,使用前后热电动势的变化。但是,尚未发现对使用寿命有规定。日本有关热电偶使用寿命的要求,是依据日本JIS(C-1602-1995)标准中规定的热电偶连续使用时间。对B、R、S型热电偶而言为2000h, K、E、J、T型热电偶为10000h。

在实际使用时,装配式热电偶通常有保护管,只有在特殊情况下才呈裸丝使用。因此,在多数场合下,保护管的寿命决定了热电偶寿命。对热电偶的实际使用寿命的判断,必须是通过长期收集、积累实际使用状态下的数据,才有可能给出较准确的结果。

(2)铠装热电偶的寿命

由于铠装热电偶有套管保护与外界环境隔绝,因此套管材质对铠装热电偶寿命影响很大,须根据用途选择热电偶丝及金属套管。当材质选定后,其寿命又随着铠装热电偶直径的增大而增加。铠装热电偶同装配式热电偶相比,虽有许多优点,但使用寿命往往低于装配式热电偶。
温馨提示:内容为网友见解,仅供参考
第1个回答  2023-06-16

热电偶,在温度采集应用上具有一定优势,是目前关于物联网上常用的设备,同样,其测量误差也是存在,总结了热电偶计量误差主要因素有:

1.热电偶热电特性不稳定所引起的误差

热电偶温度计经过一段时间使用,受其使用的环境影响,其本身的热电性能将会产生一定的变化,则该热电偶温度计计量得到的温度与真实温度有一定的偏离。影响热电偶稳定性的主要因素有:

(1)被测物对热电偶电极的污染和腐蚀;

(2)热电极受外力作用而产生的变形所引起的形变应力;

(3)感温电极在高温下微观结构晶粒发生变化;

(4)热电极受暴露在空气中发生氧化等。

2.热电偶不均匀性的影响

热电偶的均匀性是指热电偶热电极材料的均匀程度。如果热电偶中的两个热电极材料是均匀的,则热电偶回路产生的热电势和两端温度差呈正相关,而与沿热电极长度的温度梯度无关。

3.测量温度点的选择

选择合适的测温点时安装热电偶时十分重要的考虑因素,选择具有代表性的测温点,对于整个生产环境具有特殊的意义。位置选择不当,则控制和计量将毫无意义。在测量点,热电偶插入的深度也对温度测量产生影响,当外部环境和被测物温度存在温度差时,热电偶上测量的温度会随着传感器的延长而与外界环境产生热交换,继而带来计量误差。由于环境温度千变万化,这种温度误差是不可估量的。除了由于插入深浅发生热传导引入的误差以外,热电偶外部保护管材质也会引入测量误差。例如金属材质的保护管,其导热性能较好,因此在测量过程中需要将其插入更深以避免热量损失。对于陶瓷材质的保护管,则需要将其插入浅一些。

4.响应时间的影响

只有被测对象和测温元件温度一致时,测温元件的温度才能稳定,此时二者达到热平衡,这是接触法测温的基本原理。被测对象和测温元件温度达到一致需要一定时间来实现,该时间的长短,主要由测温元件的热响应性能决定,即热响应时间。热响应时间受传感器的结构和计量条件影响,通过实验,不同条件下的响应时间差别很大。静止的气态介质,两者需要持续接触30分钟以上才能达到温度平衡,如静态的液体,温度平衡时间将缩短到5分钟。

在实际工程应用中,被测对象的温度经常是处于不断变化的状态,瞬间变化的时间很短,因此对传感器的要求也相对较高,一般要求其响应能力为ms级别。如响应能力不足,则出现测量滞后现象。因此选择传感器要选择响应速度快的。计量端直径是影响响应速度的重要因素。如果偶丝较细,则响应时间较短。

5.热辐射的影响

当用热电偶测量炉中温度时,炉内高温物体对热电偶的热辐射,会引起热电偶温度升高。如果炉内的气体假定为透明的,热电偶和炉壁之间的温差比较大时,那么能量交换之后也会带来测温方面的误差。增加热传导能够有效地降低这部分误差,让炉壁的温度和热电偶温度接近。

6.热阻抗增加的影响

当热电偶处于高温的工况环境下,气态被测介质会将保护管表层灰尘烧熔,引起保护管热阻抗增加。如果介质是熔体,那么在操作中会出现炉渣的沉淀的炉渣会增加热电偶响应时间,指示温度方面会变低。因此定期检查或不定时地抽检热电偶的工作状态,能够及时地发现热电偶产生的异常,减少测量误差。

7.热电偶丝不均质引起误差

根据上述测量原理,当热电偶的偶丝均质时,根据均质回路定则,长度对计量的结果没有影响。而实际情况是,厂家在进行偶丝生产时,通常会因为温度等原因,导致偶丝粗细不均,呈竹节状,甚至出现严重打卷现象。另外在后期的加工中会出现其他问题,对热电偶进行的反复加工,会让热电偶出现畸变从而失去均质。在进行测温工作时,很多偶丝位于高温区,如果不具备均值性,且环境温度变化,那么热电偶局部就会出现寄生热电动势,从而引入误差。

第2个回答  2008-04-28
很简单,把热电偶换成铠装的,铠装也必须用用特种材质,否则,寿命短,因为你用套管,那里有气温,始终得不到挥发,容易造成误差。本回答被提问者采纳
第3个回答  2022-10-15
佛山神港测温专家回答:检查一下热电偶、热电偶接线端子、补偿导线有没有油污灰尘、导线老化或者潮湿,这种情况大多数是漏电引起的
第4个回答  2008-04-26
首先你考虑一下热电偶与被测物的距离(关键在调整),其次你的补偿导线是否过长,这是问题的关键,希望可以帮助你。

为什么热电偶测量不准?
出现测量误差的可能原因:1、材质本身不均质 如果热电阻丝是均质的,那么依据均质回路定则,测量结果与长度无关。然而热电阻丝并非均质,尤其是廉金属热电阻丝其均质性较差,又处于具有温度梯度的场合,那么其局部将产生热电动势,该电动势称为寄生电势。由寄生电势引起的误差称为不均质误差。在现有的贵金...

热电偶的温度不准,会是什么问题导致温度降低
8、热电偶冷端温度补偿不符合要求 9、热电偶与显示仪表不配套

求助:热电偶不准的因素?
对于新制热电偶,即使是不均匀热电动势能满足要求,但是,反复加工、弯曲致使热电偶产生加工畸变,也将失去均质性;且使用中热电偶长期处于高温下也会因偶丝的劣化而引起热电动势变化,如插入工业炉中的热电偶,将沿偶丝长度方向发生劣化,并随温度增高,劣化增强,当劣化的部分处于具有温度梯度的场所,也将产生寄生电动势叠加...

热电偶测温不准的原因
a.热电偶的补偿导线接反。这主要是基建时出现的问题,负责接线的人员一时的粗心造成,属人为因数。当出现热电偶的补偿导线接反情况时,操作员控制站上的显示通常比实际值偏大或偏小(根据通道测量回路而定)。b.热电偶的补偿导线绝缘层被磨破,造成信号回路接地。这主要是因为补偿导线较硬,而且在接线...

热电偶测温不准的原因
一.热电偶热电特性不稳定所引起的误差 热电偶温度计经过一段时间使用,受其使用的环境影响,其本身的热电性能将会产生一定的变化,则该热电偶温度计计量得到的温度与真实温度有一定的偏离。影响热电偶稳定性的主要因素有:(1)被测物对热电偶电极的污染和腐蚀;(2)热电极受外力作用而产生的变形所引起的...

S型热电偶温度计测温不准,什么原因?
如果热电偶和二次仪表都没更换则肯定是补偿导线问题,一、查补偿导线连接,若补偿导线分段连接看是否每一段都接线正确,如果没分段或分段接线都正确查是否补偿导线接线端有污染且潮湿导致短路,如果都没问题检定补偿导线看是否具有补偿作用,我们单位曾买过补偿导线无补偿作用,但是标识却是补偿导线。

热电偶的误差问题:
误差大小和距离长短有直接关系,我们建议:西门子ET200M的SIM331-7PF10热电偶采集卡件与热电偶的距离一定要弄清楚,如果距离太远.最好是加装温度变送器,这里不知你用的是哪种型号的热电偶?如果用的B 型热电偶,是可以用普通铜线来取代补偿导线,但是我们不推荐使用,只有条件不具备的情况下免强用....

然气考箱换了上下热电偶温度就不准了,280度需要调到380度才能考怎么回 ...
如果换上去热电偶型号和原来一样,有可能是热电偶热端放置的位置和原来不一样,热端离热源比原来近了。

热电偶长度的问题
理论上测量是以冷端在零度为标准测量的,然而,通常测量时仪表是处于室温之下的,由于冷端不为零度,造成热电势差减小,使测量不准,出现错误。所做的补偿措施就是冷端温度补偿 .热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度...

K型热电偶0-1300度温度不准 比实际值要小100度是怎么回事??
二,原来用的热电偶温度是670° 后来温度不准了是什么方式知道不准的?是不是凭感觉?一定要确认一下温度是不是差100度?三,换了热电偶后就只有500°了,也就是更低了?你用的是不是不锈钢保护管?请把热电偶元件抽出来.在里面加一小截瓷珠,再用万用表测一下,如果问量依然存在,请查一下显示表,看...

相似回答