谁能找到数学家的故事

如题所述

1910年11月12日出生于江苏省金坛县一个小商人家庭,身高1.65米,父亲华瑞栋,开一爿小杂货铺,母亲是一位贤惠的家庭妇女。他12岁从县城仁劬小学毕业后,进入金坛县立初级中学学习。1925年初中毕业后,因家境贫寒,无力进入高中学习,只好到黄炎培在上海创办的中华职业学校学习会计。不到一年,由于生活费用昂贵,被迫中途辍学,回到金坛帮助父亲料理杂货铺。
在单调的站柜台生活中,他开始自学数学。1927年秋,和吴筱之结婚。1929年,华罗庚受雇为金坛中学庶务员,并开始在上海《科学》等杂志上发表论文。1929年冬天,他得了严重的伤寒症,经过近半年的治理,病虽好了,但左腿的关节却受到严重损害,落下了终身残疾,走路要借助手杖。
其实华罗庚读初中时,一度功课并不好,有时数学还考不及格。时在金坛中学任教的华罗庚的数学老师,我国著名教育家、翻译家王维克(1900年出生,金坛人)发现华罗庚虽贪玩,但思维敏捷,数学习题往往改了又改,解题方法十分独特别致。一次,金坛中学的老师感叹学校“差生”多,没有“人才”时,王维克道:“不见得吧,依我看,华罗庚同学就是一个!”“华罗庚?”一位老师笑道:“你看看他那两个像蟹爬的字吧,他能算个‘人才’吗?”王维克有些激动地说:“当然,他成为大书法家的希望很小,可他在数学上的才能你怎么能从他的字上看出来呢?要知道金子被埋在沙里的时候,粗看起来和沙子并没有什么两样,我们当教书匠的一双眼睛,最需要有沙里淘金的本领,否则就会埋没人才啊!”
1930年春,他的论文《苏家驹之代数的五次方程式解法不能成立的理由》在上海《科学》杂志上发表。当时在清华大学数学系任主任的熊庆来教授看到后,即多方打听并推荐他到清华大学数学系当图书馆助理员。1931年秋冬之交,华罗庚进了清华园。

十分详细的参考资料http://baike.baidu.com/view/6351.html?wtp=tt
温馨提示:内容为网友见解,仅供参考
第1个回答  2008-05-17
学家的故事——苏步青

苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心
第2个回答  2008-05-04
瑞士数学家欧拉早年曾受过良好的神学教育,成为数学家后在俄国宫廷供职。

有一次,俄国女皇邀请法国哲学家狄德罗访问她的宫廷。狄德罗试图通过使朝臣改信无神论来证明他是值得被邀请的。女皇厌倦了,她命令欧拉去让这位哲学家闭嘴。于是,狄德罗被告知,一个有学问的数学家用代数证明了上帝的存在,要是他想听的话,这位数学家将当着所有朝臣的面给出这个证明。狄德罗高兴地接受了挑战。

第二天,在宫廷上,欧拉朝狄德罗走去,用一种非常肯定的声调一本正经地说:“先生,,因此上帝存在。请回答!”对狄德罗来说,这听起来好像有点道理,他困惑得不知说什么好。周围的人报以纵声大笑,使这个可怜的人觉得受了羞辱。他请求女皇答应他立即返回法国,女皇神态自若地答应了。

就这样,一个伟大的数学家用欺骗的手段“战胜”了一个伟大的哲学家。

拉普拉斯和拉格朗日是19世纪初法国的两位数学家。拉普拉斯在数学上十分伟大,在政治上却是一个十足的小人,每次政权更迭,他都能够见风使舵,毫无政治操守可言。拉普拉斯曾把他的巨著《天体力学》献给拿破仑。拿破仑想惹恼拉普拉斯,责备他犯了一个明显的疏忽:“你写了一本关于世界体系的书,却一次也没有提到宇宙的创造者——上帝。”

拉普拉斯反驳说:“陛下,我不需要这样一个假设。”

当拿破仑向拉格朗日复述这句话时,拉格朗日说:“啊,但那是一个很好的假设,它说明了许多问题。”

两个神童19世纪初,在大西洋两岸出现了两个神童:一个是英国少年哈密顿,另一个是美国孩子科尔伯恩哈密顿的天才表现在语言学上,他8岁时就已经掌握了英文、拉丁文、希腊文和希伯莱文;12岁时已熟练地掌握了波斯语、阿拉伯语、马来语和孟加拉语,只是由于没有教科书,他才没有学习汉语。科尔伯恩则在数学上表现出神奇的天才,小时候,有人问他4294967297是否是素数时,他立刻回答不是,因为它有641作为除数。类似的例子多得不胜枚举,但他不能解释他得出正确结论的过程。

人们把两个神童带到一起,这次会面是奇妙的,现在已经无法确知他们交谈了什么,但结果却是完全出人意料的:科尔伯恩的数学天赋完全“移植”给了哈密顿;哈密顿放弃了语言学,投身数学,成为爱尔兰历史上最伟大的数学家。

至于科尔伯恩,他的天才渐渐消失了。

数学家之死挪威数学家阿贝尔22岁的时候就对数学的发展做出了重大的贡献,但并不为当时的数学界所接受。他过着穷困潦倒的生活,这严重地影响了他的健康,他得了肺结核,这在当时是绝症。在最后的几个星期,他一直在考虑他的未婚姐的未来。他写信给他最好的朋友基尔豪:“她并不美丽,有着一头红发和雀斑,但她是一个可爱的女子。”虽然基尔豪和肯普从未见过面,但阿贝尔希望他们两个能够结婚。

肯普小姐照料阿贝尔度过了生命的最后时刻。在葬礼上,她与专程赶来的基尔豪相遇了。基尔豪帮助她克服了悲伤,他们相爱并结了婚。正如阿贝尔所希望的那样,基尔豪和肯普婚后十分幸福,他们经常到阿贝尔墓前去怀念他。随着岁月的流逝,他们发现越来越多的人从各地赶来,为阿贝尔在数学上的贡献向他表达他们迟到的敬意,而他们只是这一朝圣队伍中的一对普通的朝圣者。

1832年5月29日,法国年轻气盛的伽罗瓦为了所谓的“爱情与荣誉”打算和另外一个人决斗。他知道对手的枪法很好,自己获胜的希望很小,很可能会死去。他问自己,如何度过这最后的夜晚?在这之前,他曾写过两篇数学论文,但都被权威轻蔑地拒绝了:一次是被伟大的数学家柯西;另一次是被神圣的法兰西科学院他头脑中的东西是有价值的。整个晚上,他把飞逝的时间用来焦躁地一气写出他在科学上的遗言。在死亡之前尽快地写,把他丰富的思想中那些伟大的东西尽量写出来。他不时中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲。

他在天亮之前那最后几个小时写出的东西,一劳永逸地为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的一个极为重要的分支——群论。

第二天上午,在决斗场上,他被打穿了肠子。死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去。”他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻。他不朽的纪念碑是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成。

数学家的问题费马是17世纪法国图卢兹议会的议员,一个诚实而勤奋的人,同时也是历史上最杰出的数学业余爱好者。在其一生中,他给后代留下了大量极其美妙的定理;同时,由于一时的疏忽,也向后世的数学家们提出了严峻的挑战。

费马有一个习惯,他在读书的时候喜欢把思考的结果简略。有一次,他在阅读时写下了这样的话:“……将一个高于2次的幂分为两个同次的幂,这是不可能的。关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。”这个定理现在被命名为“费马大定理”,即:不可能有满足xn+yn=zn这就是费马对后世的挑战。为了寻找这个定理的证明,后世无数的数学家发起了一次又一次的冲锋,但都败下阵来。1908年,一位德国富翁曾经悬赏10万马克的巨款,奖励第一个对“费马大定理”完全证明的人。自此定理提出后,数学家们奋斗了300多年,还是没有证出来。但这个定理肯定存在,费马知道它。

在数学上,“费马大定理”已成为一座比珠穆朗玛峰更高的山峰,人类的数学智慧只有一次达到过这样的高度,从那以后,再也没有达到过。
第3个回答  2008-05-09
姓名:陈景润 (1933—1996)
身高:1.71米
国家或地区:中国
身份:数学家
功绩:哥德巴赫猜想第一人
曾系中国科学院院士

【具体信息】
■简历:
1933年5月22日生于福建闽侯。家境贫寒,学习刻苦,他在中、小学读书时,就对数学情有独钟。一有时间就演算习题,在学校里成了个 “小数学迷”。他不善言辞,为人真诚和善,从不计较个人得失,把毕生经历都献给了数学事业。高中没毕业就以同等学历考入厦门大学。1953年毕业于厦门大学数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。
■主要成果:
1742年6月7日,德国数学家哥德巴赫提出一个未经证明的数学猜想“任何一个偶数均可表示两个素数之和”简称:“ 1+1”。这一猜想被称为“哥德巴赫猜想”。中国人运用新的方法,打开了“哥德巴赫猜想”的奥秘之门,摘取了此项桂冠,为世人所瞩目。这个人就是世界上攻克“哥德巴赫猜想”的第一个人——陈景润。
陈景润除攻克这一难题外,又把组合数学与现代经济管理、尖端技术和人类密切关系等方面进行了深入的研究和探讨。他先后在国内外报刊上发明了科学论文70余篇,并有《数学趣味谈》、《组合数学》等著作。
陈景润在解析数论的研究领域取得多项重大成果,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。他是第四、五、六届全国人民代表大会代表。著有《数学趣味谈》、《组合数学》等。
■巨星的陨落 :
1984年4月27日,陈景润在横过马路时,被一辆急驶而来的自行车撞倒,后脑着地,酿成意外的重伤。雪上加霜,身体本来就不大好的陈景润,受到了几乎致命的创伤。他从医院里出来,苍白的脸上,有时泛着让人忧郁的青灰色,不久,终于诱发了帕金森氏综合症。
1996年3月19日,著名数学家陈景润因病长期住院,经抢救无效逝世,终年63岁。

陈景润不爱玩公园,不爱逛马路,就爱学习。学习起来,常常忘记了吃饭睡觉。

有一天,陈景润吃中饭的时候,摸摸脑袋,哎呀,头发太长了,应该快去理一理,要不,人家看见了,还当他是个姑娘呢。于是,他放下饭碗,就跑到理发店去了。

理发店里人很多,大家挨着次序理发。陈景润拿的牌子是三十八号的小牌子。他想:轮到我还早着哩。时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把它弄懂,这是陈景润的脾气。他看了看手表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员叔叔大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员叔叔喊三十八号吗?

过了好些时间,陈景润在图书馆里,把不懂的东西弄懂了,这才高高兴兴地往理发店走去。可是他路过外文阅览室,有各式各样的新书,可好看啦。又跑进去看起书来了,一直看到太阳下山了,他才想起理发的事儿来。他一摸口袋,那张三十八号的小牌子还好好地躺着哩。但是他来到理发店还有啥用呢,这个号码早已过时了。

陈景润进了图书馆,真好比掉进了蜜糖罐,怎么也舍不得离开。可不,又有一天,陈景润吃了早饭,带上两个馒头,一块咸菜,到图书馆去了。

陈景润在图书馆里,找到了一个最安静的地方,认认真真地看起书来。他一直看到中午,觉得肚子有点饿了,就从口袋里掏出一只馒头来,一面啃着,一面还在看书。

“丁零零……”下班的铃声响了,管理员大声地喊:“下班了,请大家离开图书馆!”人家都走了,可是陈景润根本没听见,还是一个劲地在看书呐。

管理员以为大家都离开图书馆了,就把图书馆的大门锁上,回家去了。

时间悄悄地过去,天渐渐地黑下来。陈景润朝窗外一看,心里说:今天的天气真怪!一会儿阳光灿烂,一会儿天又阴啦。他拉了一下电灯的开关线,又坐下来看书。看着看着,忽然,他站了起来。原来,他看了一天书,开窍了。现在,他要赶回宿舍去,把昨天没做完的那道题目,继续做下去。

陈景润把书收拾好,就往外走去。图书馆里静悄俏的,没有一点儿声音。哎,管理员上哪儿去了呢?来看书的人怎么一个也没了呢?陈景润看了一下手表,啊,已经是晚上八点多钟了。他推推大门,大门锁着;他朝门外大声喊叫:“请开门!请开门!”可是没有人回答。

要是在平时,陈景润就会走回座位,继续看书,一直看到第二天早上。可是,今天不行啊!他要赶回宿舍,做那道没有做完的题目呢!

他走到电话机旁边,给办公室打电话。可是没人来接,只有嘟嘟的声音。他又拨了几次号码,还是没有人来接。怎么办呢?这时候,他想起了党委书记,马上给党委书记拨了电话。

“陈景润?”党委书记接到电话,感到很奇怪。他问清楚是怎么一回事,高兴得不得了,笑着说:“陈景润!陈景润!你辛苦了,你真是个好同志。”

党委书记马上派了几个同志,去找图书馆的管理员。图书馆的大门打开了,陈景润向管理员说:“对不起!对不起!谢谢,谢谢!”他一边说一边跑下楼梯,回到了自己的宿舍。

他打开灯,马上做起那道题目来。

参考资料:http://zhidao.baidu.com/question/45197765.html?si=3

第4个回答  2008-05-03
公元前287年,阿基米德诞生于西西里岛的叙拉古(今意大利锡拉库萨)。他出生于贵族,与叙拉古的赫农王有亲戚关系,家庭十分富有。阿基米德的父亲是天文学家兼数学家,学识渊博,为人谦逊。他十一岁时,借助与王室的关系,被送到古希腊文化中心亚历山大里亚城去学习。

亚历山大位于尼罗河口,是当时文化贸易的中心之一。这里有雄伟的博物馆、图书馆,而且人才荟萃,被世人誉为“智慧之都”。阿基米德在这里学习和生活了许多年,曾跟很多学者密切交往。他在学习期间对数学、力学和天文学有浓厚的兴趣。在他学习天文学时,发明了用水利推动的星球仪,并用它模拟太阳、行星和月亮的运行及表演日食和月食现象。为解决用尼罗河水灌溉土地的难题,它发明了圆筒状的螺旋扬水器,后人称它为“阿基米德螺旋”。

公元前240年,阿基米德回叙古拉,当了赫农王的顾问,帮助国王解决生产实践、军事技术和日常生活中的各种科学技术问题。

公元前212年,古罗马军队攻陷叙拉古,正在聚精会神研究科学问题的阿基米德,不幸被蛮横的罗马士兵杀死,终年七十五岁。阿基米德的遗体葬在西西里岛,墓碑上刻着一个圆柱内切球的图形,以纪念他在几何学上的卓越贡献。

【阿基米德的科学成就】
在古希腊后期,又出现了一位最伟大的科学家,他就是阿基米德。
他正确地得出了球体、圆柱体的体积和表面积的计算公式,提出了抛物线所围成的面积和弓形面积的计算方法。
最著名的还是求阿基米德螺线(ρ=α×θ)所围面积的求法,这种螺线就以阿基米德的名字命名。
锥曲线的方法解出了一元三次方程,并得到正确答案。
阿基米德还是微积分的奠基人。他在计算球体、圆柱体和更复杂的立体的体积时,运用逐步近似而求极限的方法,从而奠定了现代微积分计算的基础。
最有趣的是阿基米德关于体积的发现:
有一次,阿基米德的邻居的儿子詹利到阿基米德家的小院子玩耍。詹利很调皮,也是个很讨人喜欢的孩子。
詹利仰起通红的小脸说:“阿基米德叔叔,我可以用你圆圆的柱于作教堂的立柱吗?”
“可以。”阿基米德说。
小詹利把这个圆柱立好后,按照教堂门前柱子的模型,准备在柱子上加上一个圆球。他找到一个圆柱,由于它的直径和圆柱体的直径和高正好相等,所以球“扑通”一下掉入圆柱体内,倒不出来了。
于是,詹利大声喊叫阿基米德,当阿基米德看到这一情况后,思索着:圆柱体的高度和直径相等,恰好嵌入的球体不就是圆柱体的内接球体吗?
但是怎样才能确定圆球和圆柱体之间的关系呢?这时小詹利端来了一盆水说:“对不起,阿基米德叔叔,让我用水来给圆球冲洗一下,它会更干净的。”
阿基米德眼睛一亮,抱着小詹利,慈爱地说:“谢谢你,小詹利,你帮助解决了一个大难题。”
阿基米德把水倒进圆柱体,又把内接球放进去;再把球取出来,量量剩余的水有多少;然后再把圆柱体的水加满,再量量圆柱体到底能装多少水。
这样反复倒来倒去的测试,他发现了一个惊人的奇迹:内接球的体积,恰好等于外包的圆柱体的容量的三分之二。
他欣喜若狂,记住了这一不平凡的发现:圆柱体和它内接球体的比例,或两者之间的关系,是3∶2。
他为这个不平凡的发现而自豪,他嘱咐后人,将一个有内接球体的圆柱体图案,刻在他的墓碑上作为墓志铭。
阿基米德的惊人才智,引起了人们的关注和敬佩。朋友们称他为“阿尔法”,即一级数学家(α—阿尔法,是希腊字母中第一个字母)。
阿基米德作为“阿尔法”,当之无愧。所以20世纪数学史学家E.T.贝尔说:“任何一张列出有史以来三个最伟大的数学家的名单中,必定包括阿基米德。
“另外两个数学家通常是牛顿和高斯。不过以他们的丰功伟绩和所处的时代背景来对比,拿他们的影响当代和后世的深邃久远来比较,还应首推阿基米德。”
我们说,阿基米德的数学成就在于他既继承和发扬了古希腊研究抽象数学的科学方法,又使数学的研究和实际应用联系起来,这在科学发展史上的意义是重大的,对后世有极为深远的影响。

阿基米德无可争议的是古代希腊文明所产生的最伟大的数学家及科学家之一,他在诸多科学领域所作出的突出贡献,使他赢得同时代人的高度尊敬。

力学方面:阿基米德在力学方面的成绩最为突出,他系统并严格的证明了杠杆定律,为静力学奠定了基础。在总结前人经验的基础上,阿基米德系统地研究了物体的重心和杠杆原理,提出了精确地确定物体重心的方法,指出在物体的中心处支起来,就能使物体保持平衡。他在研究机械的过程中,发现了杠杆定律,并利用这一原理设计制造了许多机械。他在研究浮体的过程中发现了浮力定律,也就是有名的阿基米德定律。

几何学方面:阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法。在推演这些公式的过程中,他创立了“穷竭法”,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计算的鼻祖。他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了圆周率。面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题。

天文学方面:阿基米德在天文学方面也有出色的成就。除了前面提到的星球仪,他还认为地球是圆球状的,并围绕着太阳旋转,这一观点比哥白尼的“日心地动说”要早一千八百年。限于当时的条件,他并没有就这个问题做深入系统的研究。但早在公元前三世纪就提出这样的见解,是很了不起的。

著述:阿基米德流传于世的数学著作有10余种,多为希腊文手稿。他的著作集中探讨了求积问题,主要是曲边图形的面积和曲面立方体的体积,其体例深受欧几里德《几何原本》的影响,先是设立若干定义和假设,再依次证明,作为数学家,他写出了《论球和圆柱》、《圆的度量》、《抛物线求积》、《论螺线》、《论锥体和球体》、《沙的计算》等数学著作。作为力学家,他着有《论图形的平衡》、《论浮体》、《论杠杆》、《原理》等力学著作。

其中《论球与圆柱》,这是他的得意杰作,包括许多重大的成就。他从几个定义和公理出发,推出关于球与圆柱面积体积等50多个命题。《平面图形的平衡或其重心》,从几个基本假设出发,用严格的几何方法论证力学的原理,求出若干平面图形的重心。《数沙者》,设计一种可以表示任何大数目的方法,纠正有的人认为沙子是不可数的,即使可数也无法用算术符号表示的错误看法。《论浮体》,讨论物体的浮力,研究了旋转抛物体在流体中的稳定性。阿基米德还提出过一个“群牛问题”,含有八个未知数。最后归结为一个二次不定方程。其解的数字大得惊人,共有二十多万位!

除此以外,还有一篇非常重要的著作,是一封给埃拉托斯特尼的信,内容是探讨解决力学问题的方法。这是1906年丹麦语言学家J.L.海贝格在土耳其伊斯坦布尔发现的一卷羊皮纸手稿,原先写有希腊文,后来被擦去,重新写上宗教的文字。幸好原先的字迹没有擦干净,经过仔细辨认,证实是阿基米德的著作。其中有在别处看到的内容,也包括过去一直认为是遗失了的内容。后来以《阿基米德方法》为名刊行于世。它主要讲根据力学原理去发现问题的方法。他把一块面积或体积看成是有重量的东西,分成许多非常小的长条或薄片,然后用已知面积或体积去平衡这些“元素”,找到了重心和支点,所求的面积或体积就可以用杠杆定律计算出来。他把这种方法看作是严格证明前的一种试探性工作,得到结果以后,还要用归谬法去证明它。

重视实践:阿基米德和雅典时期的科学家有着明显的不同,就是他既重视科学的严密性、准确性,要求对每一个问题都进行精确的、合乎逻辑的证明;又非常重视科学知识的实际应用。他非常重视试验,亲自动手制作各种仪器和机械。他一生设计、制造了许多机构和机器,除了杠杆系统外,值得一提的还有举重滑轮、灌地机、扬水机以及军事上用的抛石机等。被称作“阿基米德螺旋”的扬水机至今仍在埃及等地使用。

【关于阿基米德的故事】

“给我一个支点,我就能推动地球”

阿基米德不仅是个理论家,也是个实践家,他一生热衷于将其科学发现应用于实践,从而把二者结合起来。在埃及,公元前一千五百年前左右,就有人用杠杆来抬起重物,不过人们不知道它的道理。阿基米德潜心研究了这个现象并发现了杠杆原理。

赫农王对阿基米德的理论一向持半信半疑的态度。他要求阿基米德将它们变成活生生的例子以使人信服。阿基米德说:“给我一个支点,我就能移动地球。”国王说:“这恐怕实现不了,你还是来帮我拖动海岸上的那条大船吧。”当时的赫农王为埃及国王制造了一条船,体积大,相当重,因为不能挪动,搁浅在海岸上很多天。阿基米德满口答应下来。 阿基米德设计了一套复杂的杠杆滑轮系统安装在船上,将绳索的一端交到赫农王手上。赫农王轻轻拉动绳索,奇迹出现了,大船缓缓地挪动起来,最终下到海里。国王惊讶之余,十分佩服阿基米德,并派人贴出告示“今后,无论阿基米德说什么,都要相信他。”

洗澡的故事

关于阿基米德,还流传着这样一段有趣的故事。相传叙拉古赫农王让工匠替他做了一顶纯金的王冠,做好后,国王疑心工匠在金冠中掺了假,但这顶金冠确与当初交给金匠的纯金一样重,到底工匠有没有捣鬼呢?既想检验真假,又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑。

后来,国王请阿基米德来检验。最初,阿基米德也是冥思苦想而不得要领。一天,他去澡堂洗澡,当他坐进澡盆里时,看到水往外溢,同时感到身体被轻轻拖起。他突然悟到可以用测定固体在水中排水量的办法,来确定金冠的比重。他兴奋地跳出澡盆,连衣服都顾不得跑了出去,大声喊着“尤里卡!尤里卡!”。(Eureka,意思是“我知道了”)。

他经过了进一步的实验以后来到王宫,他把王冠和同等重量的纯金放在盛满水的两个盆里,比较两盆溢出来的水,发现放王冠的盆里溢出来的水比另一盆多。这就说明王冠的体积比相同重量的纯金的体积大,所以证明了王冠里掺进了其他金属。

这次试验的意义远远大过查出金匠欺骗国王,阿基米德从中发现了浮力定律:物体在液体中所获得的浮力,等于他所排出液体的重量。后来,该定律就被命名为阿基米德定律。一直到现代,人们还在利用这个原理计算物体比重和测定船舶载重量等。

爱国者阿基米德

在阿基米德晚年时,罗马军队入侵叙拉古,阿基米德指导同胞们制造了很多攻击和防御的作战武器。当侵略军首领马塞勒塞率众攻城时,他设计的投石机把敌人打得哭爹喊娘。他制造的铁爪式起重机,能将敌船提起并倒转……

另一个难以置信的传说是,他曾率领叙拉古人民手持凹面镜,将阳光聚焦在罗马军队的木制战舰上,使它们焚烧起来。罗马士兵在这频频的打击中已经心惊胆战,草木皆兵,一见到有绳索或木头从城里扔出,他们就惊呼“阿基米德来了”,随之抱头鼠窜。

罗马军队被阻入城外达三年之久。最终,于公元前212年,罗马人趁叙拉古城防务稍有松懈,大举进攻闯入了城市。此时,75岁的阿基米德正在潜心研究一道深奥的数学题,一个罗马士兵闯入,用脚践踏了他所画的图形,阿基米德愤怒地与之争论,残暴无知的士兵举刀一挥,一位璀璨的科学巨星就此陨落了。

【阿基米德对后世的影响及后世对他的评价】

有人说,是残暴和无知残害了阿基米德.据说罗马皇帝知道自己的士兵杀死了阿基米德后,很后悔.
阿基米德早年在当时的文化中心亚历山大跟随欧几里得的学生学习,以后和亚历山大的学者保持紧密联系,因此他算是亚历山大学派的成员。

阿基米德是数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就,特别是在几何学方面.他的数学思想中蕴涵着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。 正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。

除了伟大的牛顿和伟大的爱因斯坦,再没有一个人象阿基米德那样为人类的进步做出过这样大的贡献。即使牛顿和爱因斯坦也都曾从他身上汲取过智慧和灵感。他是“理论天才与实验天才合于一人的理想化身”,文艺复兴时期的达芬奇和伽利略等人都拿他来做自己的楷模。

后人常把他和I.牛顿、C.F.高斯并列为有史以来三个贡献最大的数学家。阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。

后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。

《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。

《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:22/7 <π<223/71 ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。

《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。

《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。

《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。

《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。

《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。

《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体体积。

丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。

阿基米德是古希腊伟大的数学家、力学家。约公元前287年出生于西西里岛的叙古拉,公元前212年卒于同地。
【阿基米德定律】
浸在液体中的物体,受到向上的浮力,其大小等于物体所排开的液体的重量.这就是阿基米德定律.

著名数学家的故事有哪些?
著名数学家的故事有:华罗庚、祖冲之、苏步青、陈景润、高斯。故事具体如下:一、华罗庚 华罗庚一个伟大的数学家,年轻时为了证明一个数学难题写了几个麻袋的草稿纸。华罗庚主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究与教授工作并取得突出成就。...

急求5位数学家的故事~
数学家的故事 1、数学之神 —— 阿基米德 阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学...

十位数学家小故事
华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物.下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏:有位老师,想辨别他的3个学生谁更聪明.他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏...

十个数学家的故事是什么?
十个数学家的故事:1、前212年,古罗马军队突破城防,打进了叙拉古。年已75岁的阿基米德仍在潜心研究数学,证明他的几何题。凶神恶煞的士兵把刀剑指向了他的脑袋。阿基米德明白了将要发生的事情,坦然自若地说:“等一下杀我的头,让我把这条几何定理证完。”然而,无知而又残暴的罗马士兵,一刀砍掉...

数学家的故事有哪些?谁知道?
一、塞乐斯的故事 塞乐斯是古希腊第一位闻名世界的大数学家。他原是精明商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,勇于探索。他的家乡离埃及不太远,所以他常去埃及旅行。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。二、...

有关数学家的故事有哪些
1、蒲丰试验 一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。蒲丰的统计结果是:大家共掷2212次,...

帮忙找一下五个数学家的故事
数学家的故事——祖冲之 祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家. 祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太...

数学家的故事
3、欧拉:瑞士数学家欧拉早年曾受过良好的神学教育,成为数学家后在俄国宫廷供职。有一次,俄国女皇邀请法国哲学家狄德罗访问她的宫廷。狄德罗试图通过使朝臣改信无神论来证明他是值得被邀请的。女皇厌倦了,她命令欧拉去让这位哲学家闭嘴。于是,狄德罗被告知,一个有学问的数学家用代数证明了上帝的存在,要...

数学家的小故事
数学家华罗庚的故事华罗庚爷爷是一位只有初中文凭的世界一流数学家。他1910年11月12日出生于江苏省金坛县。他小时候学习很刻苦,初中毕业升入上海中华职业学校后,由于缴不起学费而失学,失学后他在小杂货店做记账员。与此同时,他坚持自学数学,到处借书、抄书,并养成了“啃”数学难题的习惯。他用五年时间自学了高中...

数学家的小故事
关于数学家的小故事:1、韦达 韦达(1540—1603),法国数学家。年青时学习法律当过律师,后从事政治活动,当过议会议员,在西班牙的战争中曾为政府破译敌军密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数理论研究的重大进步。韦达讨论了方程根的多...

相似回答