问题是 已知函数f(x)=x^3+ax²+x+1,a∈R
(1)讨论函数f(x)的单调区间
(2)设函数f(x)在区间(-2/3,-1/3)内是减函数,求a的取值范围
1)求函数的导数f'(x)=3x^2+2ax+1.
如图,位于两根之间,f'(x)<0,所以f(x)在( [-a-sqrt(a^2-3)]/3 , [-a+sqrt(a^2-3)]/3 )上是单调递减函数,而在两根之外,f'(x)>0,即在( -无穷,[-a-sqrt(a^2-3)]/3 )并( [-a+sqrt(a^2-3)]/3 ,+无穷)上是单调递增函数。
2)如图
区间必须落在( [-a-sqrt(a^2-3)]/3 , [-a+sqrt(a^2-3)]/3 )上,即[-a-sqrt(a^2-3)]/3≤-2/3且[-a+sqrt(a^2-3)]/3≥-1/3,解不等式有a≥2
你是怎么想到去讨论|a|≤√3和 |a|>√3的啊?-[a+√(a^2-3)]/3]怎么算出来的的啊。。超难的。
追答△=4(a^2-3)=0=〉lal=√3 为驻点(极值点)
本回答被提问者采纳