数学的本质?

如题所述

最简略的回答:数学是抽象。

数学源自于古希腊语,是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学的基本要素是:逻辑和直观、分析和推理、共性和个性。
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。

现代数学在方法上最明显的特色是它的演绎性,就是由基本定义与公理出发,经逻辑推论到所有定理的发展方式。采取这种方法并非偶然,而是有内在的需求。我们要把一套概念讲清楚,必须用比较简单的概念来解释,但是这些概念又需要再加澄清,如此继续下去,如果不曾周而复始得到一个什麼也说不清的恶性循环,便会无限延伸下去,达到一个不可知的前端。人类寻求知识的目的在组织自己对外在的认识,而去了解事物的表象与本质,因此在没有坠入不可知的深渊前,必定会在某些我们直觉已认为意义相当清晰的概念处停住。我们把这些概念作为理论发展的基础,不再去解释它们的意义,也就是说暂时抛开它们的具体内容。这些概念我们称为基础概念。从此以後在我们理论发展的过程中,一切的概念都要由这些基础概念定义出,否则便不能采用。基础概念间如果彼此毫无关联,显然无法用来建立起一套有意义的理论,那麼在联系起基础概念的叙述中,我们又必须挑出一些在认识上感觉最明白的作为出发点,这些叙述我们称为公理。自此我们便用逻辑的方法,由基础概念与公理演绎出所有的定理,而一切不能由这个程序推得的叙述,我们便不认为它是这套理论裏正确的命题。现代数学中各门理论,基本上都是由这个演绎方法组织起的。不过比较复杂的理论,除了自己的基础概念及公理外,常常要引用别的理论的结果。所以严格说起来,那些理论的基础概念及公理也必须包括进来。但是为表达的简明,我们通常不这样全套写出。譬如大部分的理论都引用集合论的概念与定理,而一切数学理论系统必须立足於逻辑系统上,否则便无法作推论了。

数学研究的是抽象概念,运用的是抽像方法,数学的发展体现为抽象程度的逐渐深入。
但是深入的话,数学的本质并没有定论。我将在下面分三个部分展开,对@涛吴 提供的维基链接中提到的各种观点做一个简短的解释。

普通数学
对应于维基上说的现实主义数学,逻辑主义数学。大多普通群众,科研工作者,和很多数学家,都采取这些观点。在这些观点下,数学与现实紧密结合,因此其应用当然也非常广泛。
这其中比较肤浅的是:
数学是生产生活生存的需要,比如几何是为了丈量土地,数学是工具。
这个观点的代表么……马克思同学(如果他真这么说过)。所以1+1=2,因为一个苹果,再来一个苹果,是两个苹果,这是从实践中总结的经验和规律。
比较靠谱的想法是:
数学是无实体的,永恒的客观存在,是等待被人发现的自然规律。
提问者和大多数人都有这个想法。很多数学家,包括一些大师也有这个想法。所以勾股定理不仅是丈量土地有用,还是直角三角形的普遍规律,而三角形是自然界中的对象。
另有一些数学家,和不少学计算机的认为:
数学是逻辑的一部分,是公理系统。
这个观点在实践中还是非常流行的,并且的确非常强大。但是其中很多悖论经不住下面那个文艺数学的推敲。在这个观点下,数字和运算都是公理。

文艺数学
对应于维基上的形式主义。很多数学家,很多搞哲学的,还有我个人,都持这样的观点。

形式主义认为:数学体系是一场有一定规则的思维游戏,与现实世界完全无关。

与前面那些观点不同的是,这个观点空前抽象和开放。我们从此开始发明各种变态规则,玩奇怪的非人的游戏。在这个观点认为,勾股定理在欧几里德的几何规则下才正确,但是我们可以发明其他非欧几何,让他不正确;数是代数结构中的元素,运算是游戏规则。

这个观点给数学带来了空前的发展,也导致纯数学与现实严重脱节。不管有用没用,对形式主义者来说都一样值得研究。虽然对现实不再有直接的应用,但是其他学科主动去消化的话,仍然能找到很好的归宿。

二逼数学
我想提的是直觉说。很多搞认知学的,搞神经学的,大概会持这个观点……

直觉说认为:数学是人的大脑活动,数学都是被经历过的。

说一个数学对象存在,是因为你可以在大脑中构造这个对象。所以一些激进点的人会否认“无穷”这个概念的存在。我的一个认知学老师这样对我们说:数学家们经常觉得自己来了灵感,其实他们就是学了很多之后,从经验中获得的想法,哪有什么空来的点子。

其实他们的观点我觉得有些道理,只是……类比Sheldon说自己有很牛的想法,而Amy说自己研究的就是这些想法怎么来的。
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-03-06
数学源自于古希腊语,是研究数量、结构、变化以及空间模型等概念的一门科学。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学的基本要素是:逻辑和直观、分析和推理、共性和个性。

数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。

现代数学在方法上最明显的特色是它的演绎性,就是由基本定义与公理出发,经逻辑推论到所有定理的发展方式。采取这种方法并非偶然,而是有内在的需求。我们要把一套概念讲清楚,必须用比较简单的概念来解释,但是这些概念又需要再加澄清,如此继续下去,如果不曾周而复始得到一个什麼也说不清的恶性循环,便会无限延伸下去,达到一个不可知的前端。人类寻求知识的目的在组织自己对外在的认识,而去了解事物的表象与本质,因此在没有坠入不可知的深渊前,必定会在某些我们直觉已认为意义相当清晰的概念处停住。我们把这些概念作为理论发展的基础,不再去解释它们的意义,也就是说暂时抛开它们的具体内容。这些概念我们称为基础概念。从此以後在我们理论发展的过程中,一切的概念都要由这些基础概念定义出,否则便不能采用。基础概念间如果彼此毫无关联,显然无法用来建立起一套有意义的理论,那麼在联系起基础概念的叙述中,我们又必须挑出一些在认识上感觉最明白的作为出发点,这些叙述我们称为公理。自此我们便用逻辑的方法,由基础概念与公理演绎出所有的定理,而一切不能由这个程序推得的叙述,我们便不认为它是这套理论裏正确的命题。现代数学中各门理论,基本上都是由这个演绎方法组织起的。不过比较复杂的理论,除了自己的基础概念及公理外,常常要引用别的理论的结果。所以严格说起来,那些理论的基础概念及公理也必须包括进来。但是为表达的简明,我们通常不这样全套写出。譬如大部分的理论都引用集合论的概念与定理,而一切数学理论系统必须立足於逻辑系统上,否则便无法作推论了。
第2个回答  2013-03-06
代数,分析,几何,用抽象的语言表示一般有通用性的事实,严谨的思维逻辑
第3个回答  2013-03-06
是探索自然科学的工具本回答被提问者采纳

数学本质是什么
数学本质:探究抽象结构与模式的科学。数学是一种研究数量、结构、空间、变化等概念的抽象科学。它研究现实世界中的数量关系及其结构,并通过逻辑推理和公理体系,揭示这些概念之间的内在联系。数学的本质在于其对于抽象结构与模式的探索,这种探索不依赖于具体的物体或实例,而是寻求一般性的规律和原则。一、...

数学的本质是什么。
数学的本质:研究空间形式和数量关系的科学。数学是无实体的,是抽象的。在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”)。基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数...

数学的本质是什么数学内容的精神
数学的本质:1、对基本数学概念的理解;2、对数学思想方法的把握;3、对数学特有思维方式的感悟;4、对数学美的鉴赏;5、对数学精神,即理性精神与探究精神的追求。数学内容的精神:1、数学精神是一种创造性精神;2、数学是一种寻求众所周知的公理思想的方法;3、数学精神是一种演绎推理的精神。所有的...

数学的本质是什么
数学的本质是抽象化与逻辑推理的结合。以下是详细解释:一、数学的抽象化本质 数学是对现实世界进行抽象的一种工具。它通过对事物间的数量关系和空间形式进行深入研究,将这些关系与形式进行抽象化表达。这种抽象化不仅仅是简单的概括,更是一种对事物内在规律的探索和描述。例如,数学中的点、线、面等概...

数学的本质是什么?为什么数学可以运用在所有的其它科目上?
数学的本质,就是用人类创造的数和数的计算规则,计算物质运动、变化和发展的过程中表现出来的量。数学是高级意识的产物,是人类特有的思维工具。

数学的本质是什么?
1、数学的本质在於它的自由。——康_尔 2、二分之一个证明等于0。——高斯 3、第一是数学,第二是数学,第三是数学。——伦琴 4、当我听别人讲解某些数学问题时,常觉得很难理解,甚至不可能理解。这时便想,是否可以将问题化简些呢_往往,在终于弄清楚之后,实际上,它只是一个更简单的问题。

数学的本质是结构还是关系
数学本质是:结构(存在数量)和关系(存在变化)的描述,以及验证(结构和关系)的方法和过程。拓展知识:数学本质是结构和关系的描述,以及验证(结构和关系)的方法和过程。至于逻辑,更像是结构和关系所固有特点,而抽象是寻找结构和关系过程的手段。所以,数学通过抽象的方法,剥离去除一切无意义的具体,...

数学的本质是什么
数学研究的量,是物质的最基本概念之一。另一个重要概念是质,也就是事物本身。量规定了一切事物的一切方面,质本身也是一定的量的状态。量的变化,会导致质的变化。质的变化,一定是因为量的变化。数学与科学有什么关系?数学研究物质的量,科学研究物质的质。每一种科学,都有一套完整的概念体系,来...

数学的本质是什么?
数学的本质是逻辑与抽象的完美融合。借助集合论构建语言系统,一阶谓词逻辑构筑推理系统,通过定义抽象结构和逻辑公理化,形成理论体系。这种理论体系具有高度适应性,能在跨学科领域发挥巨大效能。数学的核心在于逻辑与结构的结合。集合论提供数学语言的基础,一阶谓词逻辑作为推理的工具。定义抽象结构,通过逻辑...

数学的本质是什么?
最简略的回答:数学是抽象。数学研究的是抽象概念,运用的是抽像方法,数学的发展体现为抽象程度的逐渐深入。但是深入的话,数学的本质并没有定论。我将在下面分三个部分展开:普通数学 对应于维基上说的现实主义数学,逻辑主义数学。大多普通群众,科研工作者,和很多数学家,都采取这些观点。在这些观点下...

相似回答