闻学泽
(四川省地震局,成都 610041)
摘要 四川西部900km长的主干走滑活动断裂带,呈现强烈的左旋断层作用,是中国西南地区的主要发震带之一。本文将地质和历史地震资料相结合用于定量评估该断裂带的地震潜势。重新计算或估计了断层平均滑动速率,并根据断层几何形态以及历史地震破裂的时-空图像,将该带划分成16个段落。根据估计的同震滑动量、历史和史前地震时间资料,使用时间可预报和更新模型,作者估算出每一断裂段的地震平均复发时间。进一步使用时间相依的概率危险性评估模型计算了未来发生段破裂地震的概率。主要结果表明:①至2026年,16个断裂段中有6个具有较高的累积发震概率(>0.45),这6个段落均位于沿断裂带至今已至少100年没有发生破裂的空段中;②由于这6个段落的多数具有较长的平均复发时间或者具有相对于平均复发时间较短的离逝时间,故未来30年内(1996~2026年)并非均有较高的发震条件概率;③不同段落发震概率的比较表明:乾宁—康定(段8—段11)和石棉—西昌(段14和段15)两个地区应属于该断裂带未来的相对危险区。
关键词 地震潜势活动断裂四川西部
1 引言
本文研究的断裂带由北西向南东纵贯整个四川西部地区(图1),全长约900km,由4条断裂组成,它们是:甘孜—玉树断裂、鲜水河断裂、安宁河断裂和则木河断裂。自从晚第四纪以来,这些断裂均表现出强烈的左旋走滑断层作用[13]。该断裂带也是中国西南地区的主要发震带之一,自18世纪以来,至少20次震级大于或等于6.5级的地震沿该带发生。
本文尝试以断层滑动速率、古地震和历史地震资料,以及时间相依的概率模型为基础,定量地评估出沿这一断裂带不同段落的地震潜势。
图2是本文研究步骤的流程图,其表示的技术路线类似于那些已由有关研究者或研究小组在板块边界上使用过的技术路线[8,19~21]。作者一直在从事将这样一种技术路线应用于中国大陆板内环境的一些活动断裂[15~18],本文是这些努力的一部分。
2 断层平均滑动速率
尽管从80年代以来已陆续发表了一些有关研究断裂带滑动速率的估值,但结果中的差别依然存在。本文仔细分析前人报道的资料[1,3,5·6,14,18,22],然后重新计算或估计了平均滑动速率及其标准差。重新计算或估计的平均滑动速率示意于图3。图3中有9个地点可获得可靠的地貌断错量和沉积物的断代数据,因而可得到计算的平均滑动速率及其标准差;图3中另外3个地点的平均滑动速率及其不确定范围(括号中的数字)是合理推测的结果。
图1 四川西部主要走滑断裂带索引图表示研究的断裂带与中国大陆其他主要活动断裂的区域关系
图3表明:甘孜—玉树断裂和鲜水河断裂具有较高的滑动速率,达10~14mm/a,但沿安宁河与则木河断裂,滑动速率仅在5.5~6.5mm/a之间。由图1看到:在安宁河以及则木河断裂的周围有较多的次级分支断层。一种可能合理的解释是:这种次级的分支断层分散了断块的水平运动量,从而减小了沿安宁河以及则木河主断裂形迹的滑动速率。
图2 活动断裂分段地震危险性定量评估的技术路线框图
3 历史地震及其破裂的时—空图像
对于该断裂带来说,除了两个部分外,其余部分均有历史地震资料。图4的一组平面图将18世纪早期至今的历史震源空间分布分5个时期分别绘出。各震源的尺度是根据地震时的重破坏区范围圈绘的。
在过去250余年中,断裂带的炉霍—道孚部分已重复发生过2~3次历史地震(图4),这一断裂部分也正是整个断裂带中具有最高滑动速率(13~14mm/a)的部位(图3)。因此,沿该断裂带的滑动速率越高,地震的复发率也越高。
如果将震源的长度取作为相应的破裂长度,并将这些破裂长度作为时间的函数,即可得到历史地震破裂的时-空图像(图5)。图5说明:
(1)在该断裂带的马尼干戈附近部分,存在着一个无文献地震记载的时空域,其意味着对于该断裂部位,除了有一次地震(大约发生在公元1506年前后)是根据粗略的考古学方法确定年代之外[3],得不到有关18世纪之前的、有文献记载的地震资料。然而,在该断裂带的冕宁—西昌之间的部分,具有500年长的地震历史记载。
(2)历史地震破裂往往在原地重复发生,但在空间上相邻的破裂之间的重叠量相对于破裂长度来说是较小的。
(3)可识别出沿该断裂带的3个地震破裂的空段。这3个空段均自从上一次地震以来至少已有100年没有发生过段破裂地震事件。
图3 沿研究断裂带左旋平均滑动速率的新近估计结果滑动速率单位:mm/a
4 断裂分段
该断裂带的分段是为了将它划分为相对独立的破裂单元。在确定段落的边界时,考虑了以下几点:①沿断裂带的大规模几何不连续,例如羽列断层之间的阶区或者较短的断层分支(持久性段落边界);②已经重复过不止一次历史破裂的、相邻断裂部位的接合区(相对稳定的段落边界);③历史上仅分别破裂过一次的两断裂部分之间的连接区(不确定的段落边界);④如果同一断裂部分发生过不同破裂长度的历史地震,则考虑其中的最长破裂的端点(不确定的段落边界)。
图6提出了研究断裂带的分段模型,该模型共分出16个断裂段并分别用S1,S2,S3,…表示。
图4 历史地震震源沿断裂带的空间分布分5个时期分别绘出从18世纪早期至今的震源,震源的大小根据地震的重破坏区面积圈绘
图5 研究断裂带历史地震破裂的时-空关系纵轴表示沿断裂带走向从南东到北西的空间位置,垂直虚线段表示不确定的破裂延伸
图6 研究断裂带的分段图
5 地震平均复发间隔
用于估计地震平均复发间隔的方法如下:
对平均滑动速率、同震平均滑动量均可得到或可估计出的断裂段,平均复发间隔据“时间可预报模式”[10]和“更新模式”[21]进行计算。
对于时间可预报模式,有:
第30届国际地质大会论文集 第5卷 现代岩石圈运动 地震地质
第30届国际地质大会论文集 第5卷 现代岩石圈运动 地震地质
式中:Tm为平均的(或中位数的)复发间隔;σd为Tm的数据不确定性;u为最晚地震的同震平均滑动量;Su为u的标准差;v为断层平均滑动速率(不包括蠕动速率);Sv为v的标准差。
对于更新模式,有:
第30届国际地质大会论文集 第5卷 现代岩石圈运动 地震地质
式中:um为n次同震滑动的平均值;Su为um的标准差;n为原有地震滑动的次数,当仅可测得最晚地震事件的滑动量时,n=1;σ1为复发间隔的内在不确定[见(10)式]。
对于大多数断裂段,同震平均滑动量用这样的方法估计[18]:将地震的面波震级M、破裂长度L、以及最大同震滑动量Dmax分别输入一组表示(u·L)与M,及u、M、L和Dmax之间关系的经验公式,得到最晚地震事件同震平均滑动量的若干种估值,然后假定每一种估值的权重反比于相应估值的方差,取加权平均作为最佳估值。
16个断裂段之一的石棉段(S14),可得到的是过去4次古地震事件的14C年龄[9]。本文由这些年龄和下式[8,18]重新计算了平均(或中值的)复发间隔
第30届国际地质大会论文集 第5卷 现代岩石圈运动 地震地质
式中:Tav为n次事件复发间隔的算术平均;μ为复发间隙对数正态分布的均值[见(9)式];T为事件之间间隔时间的中值;5为T的标准差,当地震为历史事件时,S=0;n为地震事件之间时间间隔的样本数。
用于计算16个断裂段的平均复发间隔及其不确定的数据均已在表1中列出。与上次事件以来的离逝时间一道,计算出的平均复发间隔将用于计算段破裂地震的发生概率。
表1 用于计算16个断裂段平均复发间隔的数据
续表
6 段破裂地震概率的计算
评估单个断裂段长期地震潜势的方法是基于一种具有这样假定的模型:沿一个断裂段发生一次地震的概率随着自上一次地震以来的离逝时间而增加。该模型也称为时间相依的概率模型[8,21]。本文计算了两种概率:条件概率和累积概率。条件概率Pc是在已知在时刻Te之前地震未发生的条件下,一次地震在时间区间Te至Te+DT内发生的可能性:
第30届国际地质大会论文集 第5卷 现代岩石圈运动 地震地质
式中:f(T)是随机复发间隔T的概率密度,0是相对时间的起点,设在上一次地震的发生时间。Te是从上一次地震的时间到1996年1月1日的时间段,DT是一个设置的预测时间段,取为30年。
累积概率F是在从上一次地震后直到Te+DT的时段内发震的可能性:
第30届国际地质大会论文集 第5卷 现代岩石圈运动 地震地质
本文假定f(T)是一种对数正态型的密度函数,并采纳了具有如下密度函数形式的特征地震复发时间的通用分布[7,8]:
第30届国际地质大会论文集 第5卷 现代岩石圈运动 地震地质
其中μ(=-0.01)是该分布的均值。总不确定性σN由两个部分:数据不确定σd和复发间隔内在不确定σ1组成:
第30届国际地质大会论文集 第5卷 现代岩石圈运动 地震地质
数据不确定σd来源于估计平均复发间隔Tm中的不确定性,内在不确定σ1(=0.21)来源于上述通用分布。
7 未来段破裂地震的震级估计
对于走滑性质的断裂段,未来段破裂地震的震级由一组选择的经验关系式作粗略估计:
第30届国际地质大会论文集 第5卷 现代岩石圈运动 地震地质
假定一次未来的特征事件将使一个长度相应为L的断裂段发生破裂,由以上4个公式可得到该事件震级的4种估值。取这些估值的平均作为未来地震震级的最佳估计。
编号为S4的朱倭段是所有16个断裂段中唯一的非走滑性质的断裂段(参见图6),该段位于甘孜拉分区南东缘。这一断裂段曾在1967年发生6.8级地震时表现出北东向正断层作用[1,18]。因此,该段的未来震级采用全球范围正断层地震的关系式[11]进行估计:
第30届国际地质大会论文集 第5卷 现代岩石圈运动 地震地质
8 概率地震潜势的分析
表2列出了计算的未来段破裂地震的概率和预测的特征震级。由于采用了时间可预报和更新两种复发模型,得到多少有些差别的概率值,因此,采用这两种模型得到的概率值的平均作为最终结果。
图7说明了计算得到的概率。从图7看出:至2026年,有6个断裂段具有较高的、大于或等于0.45的累积概率。这6个段落均处于根据历史破裂时-空图像鉴定出的地震空段的位置(参见图5和图7)。然而,并非这6个段落在未来30年内均有较高的发震条件概率。实际上,如果一个断裂段具有较长的至下次地震的复发时间,例如长于300年,则在一个相对较短的时间区间,例如DT=30年,无论自从上一次地震以来的离逝时间较长还是较短,计算的条件概率均不会高。这有些不同于板块边界构造环境的情况,板块边界断裂的高活动性使得那里的大地震或巨大地震平均的复发间隔往往仅几十年或者在100~200年之间[8]。
在中国大陆板内环境,分析断裂段的长期地震潜势时不仅参考条件概率,而且还应参考累积概率可能会更好。例如,S2段和S6段在未来30年内具有相同的条件概率(Pc=0.16),但是S2段的累积概率(至2026年,F=0.71)要比S6段的累积概率(至2026年,F=0.19)高得多,从而在未来30年内,S2段要比S6段具有更高的地震潜势。
表2 计算的16个断裂段发震条件概率Pe(1996~2026年)和累积概率F(至2026年)
根据不同断裂段概率值的相互比较以及从长期预测的观点,作者提出两个地区:乾宁—康定和石棉—西昌(参见图6和图7),应考虑作为未来30年的主要危险区。前一地区包括断裂段S8—S11,后一地区包括断裂段S14和S16。
9 讨论
本文对四川西部主要走滑活动断裂带的地震潜势进行了评估。这里认为应强调以下几点:
(1)本研究仅仅是一初步的努力,结果中明显存在有不确定性,并主要是由地质数据的不确定所引起的。这些地质数据包括断层滑动速率、同震平均滑动、古地震断代以及若干段落的离逝时间等。
(2)结果中的不确定性也有由模型不确定引起的部分。特征地震的通用复发时间分布[7]是针对板缘地震资料而建立的,是否能将该分布应用于像中国大陆这样的板内构造环境仍然是一个问题。在没有别的选择的情况下,使用该模型所得结果只是一种近似。
(3)无论本文所得结果有多粗糙,但其对于研究区的长期地震危险评价仍然是有用的。具有较高累积概率的断裂段均指示了长期缺震空段的事实,暗示了尽管使用了不确定的数据和模型而得不到精确的发震概率,但至少得到了那一断裂段相对于其它断裂段具有更高或更低地震潜势的信息。
图7 计算得到的、代表断裂段未来地震潜势的概率图解地表的细线是四川省的边界,粗线代表研究的断裂带;柱体的高度与概率值成正比
参考文献
[1]C.R.Allen,et al..Field study of a highly active fault zone:The Xianshuihe fault of southwestern China.Geol.Soc.Am.Bull.,1991,103:1178~1199.
[2]M.G.Bonilla,et al..Statisticol relations among earthquake magnitude,surface rupture length,and surface fault displacement.Seis.Soc.Am.Bull.,1984,74,2379~2411.
[3]蔡长星等.甘孜-玉树断裂带晚第四纪活动特征及地震危险性评价.地震科学联合基金课题92091号研究报告.1994.
[4]邓起东等.地震地表破裂参数与震级关系的研究.活动断裂研究,第二辑,北京:地震出版社,1992,247~264.
[5]李天祒等.色拉哈—康定—磨西断裂晚更新世活动特征,活动断裂研究,第二辑,北京:地震出版社,1992,1~14.
[6]李天祒等.折多塘断裂的新活动与1955年7.5级地震,活动断裂研究,第二辑,北京:地震出版社,1992,15~23.
[7]S.P.Nishenko and R.Buland.A generic recurrence interval distribution for earthquake forecasting.Bull.Seism.Soc.Am.,1987,77:1382~1399.
[8]S.P.Nishenko.Circum-Pacific seismic potential:1989~1999,PAGEOPH,1991,135(2):169~259.
[9]Qian Hong et al.,Prehistoric earthquake on the north segment of Anninghe fault and their implications for seismological research,Earthquake Research in China,1993,7(4):330~341.
[10]K.Shimazaki and T.Nakata.Time-predictable recurrence model for large earthquakes,Geophys.Res.Lett.,1980,7:279~282.
[11]D.B.Slemmons.Determination of design earthquake magnitudes for microzonation,In:3rd International Earthquake Microzonation Conference Proceedings,1982,199~130.
[12]闻学泽等.甘孜—玉树断裂带的新构造特征与地震危险性估计.地震地质,1985,7(3):23~34.
[13]Wen Xueze.The main active strike-slipfault system in western Sichuan,In:Proceedings of China-Japan Symposiumon Earthquake Prediction,Seismological Press,Beijing.1987,119~137.
[14]Wen X.et al..Recent slip rates,earthquake recurrence intervals and strong seismic hazards on the northwestern segment of the Xianshuihe fault zone,Earthquake Research in China,1988,2(4):432~451.
[15]闻学泽.鲜水河断裂带未来三十年内地震复发的条件概率.中国地震,1990,6(4):8~16.
[16]闻学泽.活断层的定量研究与长期地震潜势的概率估计问题.活动断裂研究,第一辑,北京:地震出版社,1991,174~183.
[17]闻学泽.准时间可预报复发行为与断裂带分段发震概率估计.中国地震,1993,9(4):289~300.
[18]闻学泽.活动断裂地震潜势的定量评估.北京:地震出版社,1995.
[19]Working Group on California Earthquake Probabilities.Probabilities of large earthquakes occurring in California on the San Andreas fault.U.S.Geol.Surv.Open-File Rep.,1988,88-398,66.
[20]Working Group on California Earthquake Probabilities.Probabilities of large earthquakes in the San Francisco BayRegion,California.U.S.Geol.Surv.Circ.,1990,1053:51.
[21]Working Group on California Earthquake Probabilities,Seismic hazards in southern California:Probable earthquakes,1994~2024.Bull.Seis.Soc.Am.,1995,85:379~439.
[22]Zhao Guoguang,et al..The late Quaternary slip rate and segmentation of the Xianshuihe active fault zone.In:Proceedings of the PRC-USA Bilateral Symposium on the Xianshuihe fault zone,Seismological Press.1992,41~57.
四川西部主要走滑活动断裂带的地震潜势
摘要 四川西部900km长的主干走滑活动断裂带,呈现强烈的左旋断层作用,是中国西南地区的主要发震带之一。本文将地质和历史地震资料相结合用于定量评估该断裂带的地震潜势。重新计算或估计了断层平均滑动速率,并根据断层几何形态以及历史地震破裂的时-空图像,将该带划分成16个段落。根据估计的同震滑动量、历史和史前地震时...
四川绵竹容易发生地震吗
四川绵竹容易发生地震。绵竹市位于四川盆地西北部,地处龙门山脉与成都平原接壤地带,是四川著名的地震多发区。绵竹市附近有多条断裂带穿过,其中最重要的是龙门山断裂带,这是一条大型的走滑断裂带,历史上曾多次发生大地震。此外,绵竹市还位于四川盆地地震带上,这是一个相对较小的地震带,但也是地震...
四川省龙门山断裂带的地质断层的特点和地震的历史记载?求高手帮忙...
周日晚上七点,地大有个曾佐勋的讲座,是关于这个的
四川泸定县发生6.8级地震,震源深度16千米!你从第一视角看出了什么...
我从第一视角当中看到了,灾区情况是非常严重的。大面积的建筑倒塌,以及山区出现的山体滑坡等现状。全世界所有地区当中,四川以及太平洋周边地区,每年都会发生或大或小的地震。主要是由于上述地区都处于断裂带或者板块的交界处。因此当地壳环境发生改变的时候,更加容易导致地震的发生。地震对人类社会所造成...
为什么四川地震那么多次呢
事实上,四川可以说是我国大地震频发的地方,主要在于这里的地质问题。这次地震属于鲜水河断裂带,可能不少人更熟悉龙门山断裂带,也就是汶川地震所在的地带。再加上另一个安宁河断裂带,这是四川三大活跃、危险非常大的断裂带,大地震也频繁发生在这些地方。鲜水河是雅砻江的一条支流,位于四川西部甘孜...
龙门山断裂带三大断裂带
属于逆—走滑断裂类型;最后是龙门山主山前边界大断裂,起始于都江堰,经过汉旺和安县,属于逆冲断裂。2008年5月12日的汶川大地震,北川县位于龙门山主中央断裂上,受灾严重,而都江堰市则位于龙门山主边界断裂上,这两处断裂的性质分别是逆—走滑和逆冲,都体现了龙门山断裂带地震活动的特性。
区域地质背景与区域稳定性
现今活动性显示较弱,历史上无强震记录,但小震记录较为频繁。据四川省地震局有关资料(1992),该断裂带正处于地应力高梯度区边缘,故仍具有发生6级强震的潜在能力。东支(F1)断裂距二郎山公路隧道西口仅0.4~1km,强震将对其造成直接威胁。(2)大渡河断裂:即SN向川滇构造带的北段。主干断裂沿大渡河...
2008.5.12的四川—汶川大地震是啥原因造成
2008年5月12日的四川汶川大地震是由一系列复杂的地质构造运动和板块碰撞引发的。专家分析指出,此次地震发生的主要机制是挤压,伴随有走滑的能量释放。四川地区由于长时间没有发生强烈地震,业内称为“缺震”,这增加了未来发生强震的风险。龙门山地区看似构造活动不活跃,但可能处于应力积累阶段,一旦达到...
四川地震是什么原因?
倪四道说,这次地震具体的发生机制是挤压,“一开始主要是挤压,到地震快结束时可能还有走滑的能量释放。”倪四道说,这次汶川地震发生在青藏高原的东南边缘、川西龙门山的中心,位于汶川-茂汶大断裂带上。中科院地质与地球物理研究所研究员王二七说,四川盆地是一个相对稳定的地块。从历史记录来看,尽管龙门...
龙门山断裂带的三大断裂带
首先,我们来看汶川-茂县断裂带。这条断裂带位于龙门山断裂带的东段,北起四川省阿坝藏族羌族自治州的汶川县,南至四川省阿坝藏族羌族自治州的茂县。这条断裂带是龙门山断裂带中最为活跃的一条,历史上曾多次发生大地震,如2008年的汶川大地震。这条断裂带的活动性主要表现为地壳的逆冲和走滑运动,...