高中物理公式:力学 胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长,粗细和材料有关) 重力: G = mg (g随离地面高度,纬度,地质结构而变化;重力约等于地面上物体受到的地球引力) 3 ,求F,的合力:利用平行四边形定则. 注意:(1) 力的合成和分解都均遵从平行四边行法则. (2) 两个力的合力范围: F1-F2 F F1 + F2 (3) 合力大小可以大于分力,也可以小于分力,也可以等于分力. 4,两个平衡条件: 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零. F合=0 或 : Fx合=0 Fy合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点. [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向 (2 )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5,摩擦力的公式: (1) 滑动摩擦力: f= FN 说明 : ① FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G② 为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小,接触面相对运动快慢以及正压力N无关. (2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O f静 fm (fm为最大静摩擦力,与正压力有关) 说明: a ,摩擦力可以与运动方向相同,也可以与运动方向相反. b,摩擦力可以做正功,也可以做负功,还可以不做功. c,摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反. d,静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用. 6, 浮力: F= gV (注意单位) 7, 万有引力: F=G 适用条件:两质点间的引力(或可以看作质点,如两个均匀球体). G为万有引力恒量,由卡文迪许用扭秤装置首先测量出. 在天体上的应用:(M--天体质量 ,m—卫星质量, R--天体半径 ,g--天体表面重力加速度,h—卫星到天体表面的高度) a ,万有引力=向心力 G b,在地球表面附近,重力=万有引力 mg = G g = G 第一宇宙速度 mg = m V= 8, 库仑力:F=K (适用条件:真空中,两点电荷之间的作用力) 电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反) 10,磁场力: 洛仑兹力:磁场对运动电荷的作用力. 公式:f=qVB (BV) 方向--左手定则 安培力 : 磁场对电流的作用力. 公式:F= BIL (BI) 方向--左手定则 11,牛顿第二定律: F合 = ma 或者 Fx = m ax Fy = m ay 适用范围:宏观,低速物体 理解:(1)矢量性 (2)瞬时性 (3)独立性 (4) 同体性 (5)同系性 (6)同单位制 12,匀变速直线运动: 基本规律: Vt = V0 + a t S = vo t +a t2 几个重要推论: (1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值) (2) A B段中间时刻的瞬时速度: Vt/ 2 == (3) AB段位移中点的即时速度: Vs/2 = 匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 初速为零的匀加速直线运动,在1s ,2s,3s……ns内的位移之比为12:22:32……n2; 在第1s 内,第 2s内,第3s内……第ns内的位移之比为1:3:5…… (2n-1); 在第1米内,第2米内,第3米内……第n米内的时间之比为1:: ……( 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:s = aT2 (a--匀变速直线运动的加速度 T--每个时间间隔的时间) 竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动.全过程是初速度为VO,加速度为g的匀减速直线运动. 上升最大高度: H = (2) 上升的时间: t= (3) 上升,下落经过同一位置时的加速度相同,而速度等值反向 (4) 上升,下落经过同一段位移的时间相等. 从抛出到落回原位置的时间:t = (5)适用全过程的公式: S = Vo t --g t2 Vt = Vo-g t Vt2 -Vo2 = - 2 gS ( S,Vt的正,负号的理解) 14,匀速圆周运动公式 线速度: V= R =2f R= 角速度:= 向心加速度:a =2 f2 R 向心力: F= ma = m2 R= mm4n2 R 注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心. (2)卫星绕地球,行星绕太阳作匀速圆周运动的向心力由万有引力提供. 氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供. 15,平抛运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动 水平分运动: 水平位移: x= vo t 水平分速度:vx = vo 竖直分运动: 竖直位移: y =g t2 竖直分速度:vy= g t tg = Vy = Votg Vo =Vyctg V = Vo = Vcos Vy = Vsin 在Vo,Vy,V,X,y,t,七个物理量中,如果 已知其中任意两个,可根据以上公式求出其它五个物理量. 16, 动量和冲量: 动量: P = mV 冲量:I = F t (要注意矢量性) 17 ,动量定理: 物体所受合外力的冲量等于它的动量的变化. 公式: F合t = mv' - mv (解题时受力分析和正方向的规定是关键) 18,动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变. (研究对象:相互作用的两个物体或多个物体) 公式:m1v1 + m2v2 = m1 v1'+ m2v2'或p1 =- p2 或p1 +p2=O 适用条件: (1)系统不受外力作用. (2)系统受外力作用,但合外力为零. (3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力
高中数学公式:抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体 体积计算公式椭圆 的 长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 四倍角公式: sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4) 五倍角公式: sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4) 六倍角公式: sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1)) tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6) 七倍角公式: sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6)) cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7)) tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6) ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有两个不相等的个实根 b2-4ac<0 注:方程有共轭复数根 公式分类 公式表达式 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 图形周长 面积 体积公式 长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积 已知三角形底a,高h,则S=ah/2 已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2) 和:(a+b+c)*(a+b-c)*1/4 已知三角形两边a,b,这两边夹角C,则S=absinC/2 设三角形三边分别为a、b、c,内切圆半径为r 则三角形面积=(a+b+c)r/2 设三角形三边分别为a、b、c,外接圆半径为r 则三角形面积=abc/4r 已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶) | a b 1 | S△=1/2 * | c d 1 | | e f 1 | 【| a b 1 | | c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC | e f 1 | 选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】 秦九韶三角形中线面积公式: S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 其中Ma,Mb,Mc为三角形的中线长. 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积 =长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体) 的体积=底面积×高 平面图形 名称 符号 周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2?sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA)
温馨提示:内容为网友见解,仅供参考