陈景润的1+ 1是他证明了的哥德巴赫猜想。简介如下:上个世纪70年代末,由于徐迟的一篇报告文学
《哥德巴赫猜想》,让陈景润成了中国家喻户晓的科学家,也让哥德巴赫猜想成了在中国最著名的数学难题,激发了无数民间人士梦想成为陈景润第二。哥德巴赫(Goldbach ]C.,1690.3.18~1764.11.20)是德国数学家;1729年~1764年,哥德巴赫与
欧拉保持了长达三十五年的书信往来。在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。我发现:任何大于5的奇数都是三个
素数之和。但这怎样证明呢?欧拉也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:2N+1=3+2(N-1),其中2(N-1)≥4。若欧拉的命题成立,则偶数2N可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。 但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。 现在通常把这两个命题统称为哥德巴赫猜想。 哥德巴赫猜想的表述极为简单:任何一个大于2的偶数都可以表示成两个素数之和,例如4=2+2,6=3+3,8=3+5。 由于哥德巴赫猜想通常被简写为“1+1”(一个素数加一个素数),这就让相当多的人误以为它要证明的是1+1=2,就未免让人疑惑证明它有什么用。 目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个
质数与一个
自然数之和,而后者最多仅仅是两个质数的乘积。“通常都简称这个结果为 (1 + 2)。” 1978年,中国的陈景润证明了:“1+1”上界限解。 航天飞机试飞成功时,我就听到有人说,陈景润的证明被美国人用来制造航天飞机了,可惜咱中国人反倒不知道怎么用。