收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。
1、收敛函数:
对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
2、如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数。
对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域 对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项 级数 ,因而有一确定的和s。
这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)
记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)=0
扩展资料:
迭代算法的敛散性:
1、全局收敛:
对于任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所产生的点列收敛,即其当k→∞时,Xk的极限趋于X*,则称Xk+1=φ(Xk)在[a,b]上收敛于X*。
2、局部收敛:
若存在X*在某邻域R={X| |X-X*|<δ},对任何的X0∈R,由Xk+1=φ(Xk)所产生的点列收敛,则称Xk+1=φ(Xk)在R上收敛于X*。
参考资料来源:百度百科 - 收敛
收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。
收敛数列
令{ }为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有| -A|<b恒成立,就称数列{ }收敛于A(极限为A),即数列{ }为收敛数列。
函数收敛
定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
收敛的定义方式很好的体现了数学分析的精神实质。
如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数。
收敛就是发展趋势会趋向一个固定的值,包括0;与收敛相对的是开放,也就是趋于无穷大,包括正无穷和负无穷。
有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。
例如:f(x)=1/x 当x趋于无穷是极限为0,所以收敛。
f(x)= x 当x趋于无穷是极限为无穷,即没有极限,所以发散。
本回答被网友采纳收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。
1、收敛数列
令{an}为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|an-A|<b恒成立,就称数列{an}收敛于A(极限为A),即数列{an}为收敛数列。
2、函数收敛
定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1、x2满足0<|x1-x0|<c、0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
扩展资料
收敛数列的性质:
1、唯一性
如果数列Xn收敛,每个收敛的数列只有一个极限。
2、有界性
定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。
定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。
3、保号性
如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。
参考资料来源:百度百科-收敛
本回答被网友采纳收敛是一个数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。
函数收敛:柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
扩展资料:
迭代算法的敛散性
1.全局收敛
对于任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所产生的点列收敛,即其当k→∞时,Xk的极限趋于X*,则称Xk+1=φ(Xk)在[a,b]上收敛于X*。
2.局部收敛
若存在X*在某邻域R={X| |X-X*|<δ},对任何的X0∈R,由Xk+1=φ(Xk)所产生的点列收敛,则称Xk+1=φ(Xk)在R上收敛于X*。
经济学中的收敛,分为绝对收敛和条件收敛
1.绝对收敛,指的是不论条件如何,穷国比富国收敛更快。
2.条件收敛,指的是技术给定其他条件一样的话,人均产出低的国家,相对于人均产出高的国家,有着较高的人均产出增长率,一个国家的经济在远离均衡状态时,比接近均衡状态时,增长速度快。
参考资料来源:百度百科-收敛
本回答被网友采纳收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。
定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
扩展资料:
对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。
函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域 对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项级数 ,因而有一确定的和s。
这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)
记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)=0
1、鲍尔收敛性质:设U是开集,{u}C.扩(U)是单调增加列,若极限函数u=lim u}局部有界,则uE.扩(U)。
2、杜布收敛性质:设U是开集,{un} G扩(U)是单调增加列,若极限函数u=lim u在U的一个稠密子集里有限,则。E}罗(U)。
3、布雷洛收敛性质:设U是区域,{ u., } c笋<U)是单调增加列,若极限函数u=lim u在U中某一点有限,则u E孝二<U).。
显然,具有杜布收敛性质或布雷洛收敛性质的吧扩必具有鲍尔收敛性质,反之不然.如果X是局部连通的,那么具有布雷洛收敛性质者必具有杜布收敛性质,反之不然。
参考资料来源:百度百科——收敛
本回答被网友采纳高等数学中的收敛是什么意思
收敛是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。高数中收敛是指函数有极限。函数收敛准则:关于函数在某点处的收敛定义。对于任意实数c,存在此数大于0,对任意两个数a、b,满足a减b大于0小于c。收敛的定义方式很好的体现了数学分析...
高等数学中的“收敛”是什么意思?
高等数学中的“收敛”指的是数列或函数的一种特性,具体表现为数列趋向于某一个固定的数值或函数在某一范围内趋于无限大。下面将进行详细解释。首先,我们来了解数列的收敛性。在高等数学中,如果一个数列的项逐渐靠近某一个固定的数值而不离开它,那么我们说这个数列是收敛的。具体来说,给...
高等数学收敛的定义
高等数学收敛的定义是指数列或函数序列趋向于某个特定值或极限的过程。1、收敛类型有收敛数列、函数收敛、全局收敛、局部收敛,收敛就是趋于无穷的包括无穷小或者无穷大,该函数总是逼近于某一个值,这就叫函数的收敛性,也就是函数的值总被某个值约束着,就是收敛。2、函数在某点处的收敛定义。对于...
高等数学收敛与发散怎样判断?
收敛的定义是一个序列或函数会聚于一点,趋向于一个确定的极限值;发散的定义是一个序列或函数没有一个确定的极限值。收敛和发散举例:f(x)=1\/x,当x趋于无穷是极限为0,所以收敛。f(x)= x,当x趋于无穷是极限为无穷,即没有极限,所以发散。收敛和发散的判断:1、判断单调性 如果函数单调...
在数学中什么是收敛
函数序列的收敛是指在某点处,函数序列的值随序列项数的增加逐渐趋近于某个函数值。函数级数的收敛则是指级数的和随项数的增加逐渐趋近于某个确定的数值。理解数列和函数的收敛性,对于深入研究数学分析中的许多问题至关重要。它不仅是数学理论的重要组成部分,也是许多实际问题解决的关键。
高等数学中的“收敛”是什么意思?
收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。 1、收敛数列 令{an}为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|an-A|0,存在c>0,对任意x1、x2满足0<|x1-...
高等数学中的“收敛”是什么意思?
高等数学中的“收敛”概念,是研究函数行为的重要概念,它描述的是一个量或者序列在接近某特定值时的趋近性。具体来说,收敛可以分为几种类型:函数收敛、数列收敛、全局收敛和局部收敛。函数收敛指的是当函数在某点附近,其值的变化变得越来越小,趋于一个特定的值。例如,对于定义在某区间内的函数,...
高等数学收敛的定义是什么?
是指会聚于一点,向某一值靠近。收敛数列,数学名词,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|...
高等数学中的“收敛”是什么意思?
高等数学中的"收敛"概念至关重要。首先,数列的收敛是指数列对于任何固定的实数A,存在一个正整数N,当n大于N时,数列元素与A之间的差距小于任何给定的b,这就意味着数列有极限A,非这样则称为发散。同样,函数的收敛定义类似,柯西准则描述了函数f(x)在某点x0的收敛性,即对于任何b,存在c使得在x...
高数中收敛什么意思
在高等数学的范畴中,"收敛"这个概念代表着函数的极限存在性。简单来说,当我们谈论一个函数在某点x0的收敛时,意味着无论你如何接近这个点,函数的值都会稳定在一个确定的值附近,无论这个值是有限还是无穷大。这个特性由收敛准则精确描述:对于给定的任意正数b,总能找到一个c,使得当x1和x2都足够...