如何用十字双乘法解一元二次方程。详细过程。要有例子。

如题所述

十字相乘法概念:
十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项a分解成两个因数a1,a2的积a1�6�1a2,把常数项c分解成两个因数c1,c2的积c1�6�1c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果: ,在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

例题

例1 把2x2-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下解,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=1×3==(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1

2 3
1×3+2×1
=5
1 3

2 1
1×1+2×3
=7
1 -1

2 -3
1×(-3)+2×(-1)
=-5
1 -3

2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x2-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1

a2 c2
a1a2+a2c1
按斜线交叉相乘,再相加,得到a1a2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常
叫做十字相乘法.

例2 把6x2-7x-5分解因式.
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1

3 -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式.
解 6x2-7x-5=(2x+1)(3x-5).
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x2+2x-15分解因式,十字相乘法是
1 -3

1 5
1×5+1×(-3)=2
所以x2+2x-15=(x-3)(x+5).

例3 把5x2+6xy-8y2分解因式.
分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
1 2

5 -4
1×(-4)+5×2=6
解 5x2+6xy-8y2=(x+2y)(5x-4y).
指出:原式分解为两个关于x,y的一次式.

例4 把(x-y)(2x-2y-3)-2分解因式.
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) 2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2

2 +1
1×1+2×(-2)=-3
指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.

例3:x2+2x-15

分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)

(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。

=(x-3)(x+5)

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m
温馨提示:内容为网友见解,仅供参考
第1个回答  2014-01-16
双十字相乘常用来分解二元二次六项式ax2+bxy+cy2+dx+ey+f步骤:1.用十字相乘法分解ax2+bxy+cy2 ,得到一个十字相乘图 2.把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx例如:2x2-7xy-22y2-5x+35y-3分解: x 2y -3 2x -11y 1表示(x+2y)(2x-11y)= 2x2-7xy-22y2 (x-3)(2x+1)=2x2-5x-3 (2y-3)(-11y+1)=-22y2+35y-3
第2个回答  2014-01-16
总:将二次项系数分解为【乘积】的形式,并使两个积的和等于混合想的系数(混合想就是xy ab什么的...)例:x�0�5+6xy+9y�0�5过程如下: x 3y x 3y———————— 【第一数×第四数 + 第二数×第三数】 3xy + 3xy=6xy所以 原式=(x+3y)�0�5 起先凑系数的时候可能要花一些时间,题做多了就好了~加油~~

数学一元二次方程,用十字相乘法解决(必须),需要详细过程,希望大神帮忙...
授汝以渔:二次项系数为1时,先将常数项因式分解,要使两个因式相加等于一次项系数<例1:-6=(-3)×2 -3+2=-1——结果就是(x+因式1)(x+因式2),即(x-3)(x+2)> 二次项系数不为1时,先因式分解常数项(设为a b)和一次项系数(设为c d),相乘后相加凑一次项系数(即一次项系数=ac...

巧用十字相乘法解一元二次方程图文解释
1、解一元二次方程,巧用十字相乘法,能快速得出结果,大大节约了计算时间。以下面的方程为例子讲解:将从左到右的各项标为ABC项。2、将A项进行拆分,a2可以拆解为axa,C项-6拆分为-2(2)3(-3)或者-1(1)6(-6)。3、这个步骤就是十字相乘法的核心,我们需要将第2步中的拆解结果进行十...

怎么用十字相乘法解一元二次方程,简单点说???
十字相乘法是把x^2的系数当成1x1 常数项当成-1x4 1 -1 x 1 4 使得交叉相乘=x项系数3 x^2+3x-4=(x-1)(x+4)6x^2-x-1 2 -1 X 3 1 6x^2-x-1=(2x-1)(3x+1)

用十字相乘法解一元二次方程9x²+3x-2=0哪位大神救救急
用十字相乘法解一元二次方程9x²+3x-2=0的根,可以这样求解:1、把9分解成3×3,-2分解成2×(-1)2、交叉相乘(十字相乘),得到3×2+3×(-1)=6-3=3,该值等于一元二次方程的一次项系数 3、得到原方程等于(3x+2)(3x-1)=0 4、分别令(3x+2)=0 和(3x-1)=0,得到...

怎样用十字相乘法解一元二次方程?举几个例子!!大神,拜托了?
3x^2-10x+3=(3x-1)(x-3),x1=1\/3,x2=3.一般地,(ax+b)(cx+d)=acx^2+(ad+bc)x+bd.

十字相乘法因式分解解一元二次方程
首先,十字相乘法的原理是将一元二次方程ax² + bx + c = 0形式的方程分解为两个一次因式的乘积形式。具体步骤为:寻找两个数m和n,使得m * n = a * c,同时m + n = b。然后将原方程拆分成(x + m)(x + n) = 0的形式。例如:方程x² - 5x + 6 = 0。我们需要...

如何用十字相乘法解一元二次方程
解: 因为 2 -5 3 ╳ 5 所以 原方程可变形成(2x-5)(3x+5)=0 所以 x1=5\/2 x2=-5\/3 2)、用十字相乘法解一些比较难的题目 例5把14x²-67xy+18y²分解因式 分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y&#...

十字相乘法怎么解一元二次方程?
例1 把2x^2-7x+3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分 别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数):2=1×2=2×1;分解常数项:3=1×3=3×1=(-3)×(-1)=(-...

十字相乘法解一元二次方程
十字相乘法是一种用于分解一元二次方程的方法。我们通过分解二次项系数和常数项,将其排列成十字交叉的形式,然后交叉相乘,找出代数和,以确定是否与一次项系数相匹配。这种方法尤其适用于二次三项式 ax^2 + bx + c(其中a≠0)。例如,对于2x^2 - 7x + 3,首先分解2和3,得到1×2和1×3或...

十字相乘法解一元二次方程
十字相乘法解一元二次方程如下:一元二次方程十字相乘法公式:(x+1)(x+2)=x2。十字相乘法的方法 十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。十字相乘法的用处 用十字相乘法来分解因式。用十字相乘法来解一元二次方程。十字相乘法的优点 用十字相乘法来解题...

相似回答