补码.原码.反码怎么运算的啊.详细一点

如题所述

原码, 反码和补码的概念.对于一个数, 计算机要使用一定的编码方式进行存储. 原码, 反码, 补码是机器存储一个具体数字的编码方式。原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值。反码就是正数的反码是其本身,负数的反码是在其原码的基础上, 符号位不变,其余各个位取反。补码就是正数的补码就是其本身,负数的补码是在其原码的基础上, 符号位不变, 其余各位取反。

1. 原码

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:

[+1]原 = 0000 0001

[-1]原 = 1000 0001

第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:

[1111 1111 , 0111 1111]

[-127 , 127]

原码是人脑最容易理解和计算的表示方式。

2. 反码

反码的表示方法是:

正数的反码是其本身

负数的反码是在其原码的基础上, 符号位不变,其余各个位取反。

[+1] = [00000001]原 = [00000001]反

[-1] = [10000001]原 = [11111110]反

可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算。

3. 补码

补码的表示方法是:

正数的补码就是其本身

负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

[+1] = [00000001]原 = [00000001]反 = [00000001]补

[-1] = [10000001]原 = [11111110]反 = [11111111]补

对于负数,补码表示方式也是人脑无法直观看出其数值的。通常也需要转换成原码在计算其数值。

为何要使用原码, 反码和补码

在开始深入学习前, 我的学习建议是先"死记硬背"上面的原码, 反码和补码的表示方式以及计算方法。

现在我们知道了计算机可以有三种编码方式表示一个数. 对于正数因为三种编码方式的结果都相同:

[+1] = [00000001]原 = [00000001]反 = [00000001]补

所以不需要过多解释. 但是对于负数:

[-1] = [10000001]原 = [11111110]反 = [11111111]补

可见原码, 反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?

首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了。

于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2

如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数。

为了解决原码做减法的问题, 出现了反码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0

发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0。

于是补码的出现, 解决了0的符号以及两个编码的问题:

1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原

这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:

(-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]补 + [1000 0001]补 = [1000 0000]补

-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128. 但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的)

使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127]。

因为机器使用补码, 所以对于编程中常用到的32位int类型, 可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值。

温馨提示:内容为网友见解,仅供参考
第1个回答  2022-01-09

计算机中,并没有原码和反码,只是使用补码,代表正负数。

使用补码的意义:可以把减法或负数,转换为加法运算。从而简化计算机的硬件。

------------

比如钟表,时针转一圈,周期是 12 小时。

倒拨 3 小时,可以用正拨 9 小时代替。

9,就称为-3 的补数。

计算方法:12-3 = 9。

对于分针,倒拨 X 分,就可以用正拨 60-X 代替。

------------

如果,限定了两位十进制数 (0~99),周期就是 100。

那么,减一,就可以用 +99 代替。

  24-1 = 23

  24 + 99 = (1) 23

忽略进位,只取两位数,这两种算法,结果就是相同的。

于是,99 就是 -1 的补数。

其它负数的补数,大家可以自己求!

求出了负数的补数,就可用加法,代替减法了。

------------

计算机中使用二进制,补数,就改称为【补码】。

常用的八位二进制是:0000 0000~1111 1111。

它们代表了十进制:0~255,周期就是 256。

那么,-1,就可以用 255 = 1111 1111 代替。

所以:-1 的补码,就是 1111 1111 = 255。

同理:-2 的补码,就是 1111 1110 = 254。

继续:-3 的补码,就是 1111 1101 = 253。

。。。

最后:-128,补码是 1000 0000 = 128。

计算公式:负数的补码=256+这个负数。

正数,直接运算即可,不需要求补码。

   也可以说,正数本身就是补码。

------------

补码的应用如: 7-3 = 4。

用补码的计算过程如下:

    7 的补码=0000 0111

    -3的补码=1111 1101

--相加-------------

   得   (1)  0000 0100 = 4 的补码

舍弃进位,只保留八位作为结果。

------------

原码和反码,毫无用处。计算机中,根本就没有它们。

第2个回答  2020-10-29
第3个回答  推荐于2017-11-17
数在计算机中是以二进制形式表示的。
数分为有符号数和无符号数。
原码、反码、补码都是有符号定点数的表示方法。
一个有符号定点数的最高位为符号位,0是正,1是副。

以下都以8位整数为例,

原码就是这个数本身的二进制形式。
例如
0000001 就是+1
1000001 就是-1

正数的反码和补码都是和原码相同。

负数的反码是将其原码除符号位之外的各位求反
[-3]反=[10000011]反=11111100
负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。
[-3]补=[10000011]补=11111101
一个数和它的补码是可逆的。

为什么要设立补码呢?

第一是为了能让计算机执行减法:
[a-b]补=a补+(-b)补

第二个原因是为了统一正0和负0
正零:00000000
负零:10000000
这两个数其实都是0,但他们的原码却有不同的表示。
但是他们的补码是一样的,都是00000000
特别注意,如果+1之后有进位的,要一直往前进位,包括符号位!(这和反码是不同的!)
[10000000]补
=[10000000]反+1
=11111111+1
=(1)00000000
=00000000(最高位溢出了,符号位变成了0)

有人会问
10000000这个补码表示的哪个数的补码呢?
其实这是一个规定,这个数表示的是-128
所以n位补码能表示的范围是
-2^(n-1)到2^(n-1)-1
比n位原码能表示的数多一个

又例:
1011
原码:01011
反码:01011 //正数时,反码=原码
补码:01011 //正数时,补码=原码

-1011
原码:11011
反码:10100 //负数时,反码为原码取反
补码:10101 //负数时,补码为原码取反+1

0.1101
原码:0.1101
反码:0.1101 //正数时,反码=原码
补码:0.1101 //正数时,补码=原码

-0.1101
原码:1.1101
反码:1.0010 //负数时,反码为原码取反
补码:1.0011 //负数时,补码为原码取反+1

总结:
在计算机内,定点数有3种表示法:原码、反码和补码

所谓原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。

反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。

补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。

1、原码、反码和补码的表示方法

(1) 原码:在数值前直接加一符号位的表示法。

例如: 符号位 数值位

[+7]原= 0 0000111 B

[-7]原= 1 0000111 B

注意:a. 数0的原码有两种形式:

[+0]原=00000000B [-0]原=10000000B

b. 8位二进制原码的表示范围:-127~+127

2)反码:

正数:正数的反码与原码相同。

负数:负数的反码,符号位为“1”,数值部分按位取反。

例如: 符号位 数值位

[+7]反= 0 0000111 B

[-7]反= 1 1111000 B

注意:a. 数0的反码也有两种形式,即

[+0]反=00000000B

[- 0]反=11111111B

b. 8位二进制反码的表示范围:-127~+127

3)补码的表示方法

1)模的概念:把一个计量单位称之为模或模数。例如,时钟是以12进制进行计数循环的,即以12为模。在时钟上,时针加上(正拨)12的整数位或减去(反拨)12的整数位,时针的位置不变。14点钟在舍去模12后,成为(下午)2点钟(14=14-12=2)。从0点出发逆时针拨10格即减去10小时,也可看成从0点出发顺时针拨2格(加上2小时),即2点(0-10=-10=-10+12=2)。因此,在模12的前提下,-10可映射为+2。由此可见,对于一个模数为12的循环系统来说,加2和减10的效果是一样的;因此,在以12为模的系统中,凡是减10的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。10和2对模12而言互为补数。

同理,计算机的运算部件与寄存器都有一定字长的限制(假设字长为8),因此它的运算也是一种模运算。当计数器计满8位也就是256个数后会产生溢出,又从头开始计数。产生溢出的量就是计数器的模,显然,8位二进制数,它的模数为28=256。在计算中,两个互补的数称为“补码”。

2)补码的表示: 正数:正数的补码和原码相同。

负数:负数的补码则是符号位为“1”,数值部分按位取反后再在末位(最低位)加1。也就是“反码+1”。

例如: 符号位 数值位

[+7]补= 0 0000111 B

[-7]补= 1 1111001 B

补码在微型机中是一种重要的编码形式,请注意:

a.采用补码后,可以方便地将减法运算转化成加法运算,运算过程得到简化。正数的补码即是它所表示的数的真值,而负数的补码的数值部份却不是它所表示的数的真值。采用补码进行运算,所得结果仍为补码。

b.与原码、反码不同,数值0的补码只有一个,即 [0]补=00000000B。

c.若字长为8位,则补码所表示的范围为-128~+127;进行补码运算时,应注意所得结果不应超过补码所能表示数的范围。本回答被网友采纳

原码补码反码怎么计算?
方法:(1)正整数的原码,反码和补码计算。【符号位为0,原码=反码=补码】(2)负整数的原码,反码和补码计算,先求原码,再求反码,最后求补码。(3)根据补码求真值,一般使用图中的公式计算,正整数符号为+,负整数符号为-,通常完成补码求真后,可以按步骤1、2简单的逆推一下,看结果是否正确。

什么是原码、补码和反码?
原码 = 反码 + 1 反码 = 补码 - 1 补码 = 2^n - 1,其中n为数值的位数 例如,假设我们要计算一个8位有符号整数的原码、补码和反码,则可以按照以下步骤进行计算:1. 将8位二进制数10000001转换为十进制数:127 2. 计算原码:原码 = 反码 + 1,则反码为11111110,加上1得到原码为10000000...

补码.原码.反码怎么运算的啊.详细一点
反码就是正数的反码是其本身,负数的反码是在其原码的基础上, 符号位不变,其余各个位取反。补码就是正数的补码就是其本身,负数的补码是在其原码的基础上, 符号位不变, 其余各位取反。1. 原码 原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:[+...

什么是原码、反码、补码?
正整数的原码:这个数的二进制,符号位为0;正整数的原码=补码=反码 例1:+66 66的二进制:1000010,所以+66的原码: 0 1000010 =补码: 0 1000010=反码: 0 1000010 负整数的原码:仍是这个数的二进制,符号位为1;负整数的原码、反码、补码计算:先求原码,再求反码,最后求补码...

计算机的原码,反码,补码是怎么回事?可以举例说明吗?
原码、反码和补码是计算机中对数字二进制的三种表示方法。1、原码 原码(trueform)是一种计算机中对数字的二进制定点表示方法。原码表示法在数值前面增加了一位符号位(即最高位为符号位):正数该位为0,负数该位为1(0有两种表示:+0和-0),其余位表示数值的大小。例如:用8位二进制表示一个数,...

原码补码反码怎么算的
计算机原码反码补码计算方法:1、原码 原码就是符号位加上真值的绝对值,即用第一位表示符号,其余位表示值。比如如果是8位二进制:[+1]原 = 0000 0001 [-1]原 = 1000 0001 第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:[1111 1111 , 0111 1111]即[-127 , 127...

原码、反码、补码之间怎么快速转换,大神带你轻松学
一、原码、反码、补码的转换过程如下:在原码表示中,0有两种表示方式:[+0]原=0000000,[-0]原=1000000。反码表示中,0也有两种表示形式:[+0]反=0000000,[-0]反=11111111。补码表示中,0有唯一的编码:[+0]补=0000000,[-0]补=0000000。计算机采用这些编码方法,便于运算,提高运算速度。原码...

原码反码补码计算口诀
一:原码,反码,补码与加减乘除运算 1:原码,反码与补码 正数的原码,反码,补码都一至.负数原码为绝对值二进制最高位取1, 负数的反码是原码(符号位除外)按位取反, 负数补码是反码+1如9的原码,反码,补码都是 00000000 00000000 00000000 00001001-9 原码 10000000 00000000 00000000 00001001-9的反码 ...

十进制数的反码、原码、补码都怎么算
补码则是在反码的基础上,最低位加1,得到11110110。如此,十进制数的表示在计算机中得以统一。了解这三种码的转换,对于理解和处理二进制数据至关重要。原码直观反映十进制数的二进制表示,反码用于表示负数时的二进制翻转,补码则在加法运算中提供了简化的方法,避免了正负数相加时需要考虑符号位的额外...

如何计算正数的原码,补码,反码,补码,反码?
正数的原码,补码,反码相同; 负数的反码:原码的数值取反; 负数的补码:原码转换成反码,反码末位加1 负数的移码:与补码的符号位(第一位数字)相反 已知补码求原码: 最高位如果是1的话(负数),那么除了最高位之外的取反,然后加1得原码。 最高位如果是0的话,不变,正数的补码就是他的...

相似回答