斐波那契数列的通项公式是怎么求出来的?

尽量详细!

斐波那契数列:1、1、2、3、5、8、13、21、……
  如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
  F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
  显然这是一个线性递推数列。
  通项公式的推导方法一:利用特征方程
  线性递推数列的特征方程为:
  X^2=X+1
  解得
  X1=(1+√5)/2,,X2=(1-√5)/2
  则F(n)=C1*X1^n + C2*X2^n
  ∵F(1)=F(2)=1
  ∴C1*X1 + C2*X2
  C1*X1^2 + C2*X2^2
  解得C1=1/√5,C2=-1/√5
  ∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示根号5)
  通项公式的推导方法二:普通方法
  设常数r,s
  使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
  则r+s=1, -rs=1
  n≥3时,有
  F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
  F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
  F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
  ……
  F(3)-r*F(2)=s*[F(2)-r*F(1)]
  将以上n-2个式子相乘,得:
  F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
  ∵s=1-r,F(1)=F(2)=1
  上式可化简得:
  F(n)=s^(n-1)+r*F(n-1)
  那么:
  F(n)=s^(n-1)+r*F(n-1)
  = s^(n-1) + r*s^(n-2) + r^2*F(n-2)
  = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
  ……
  = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
  = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
  (这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
  =[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
  =(s^n - r^n)/(s-r)
  r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2
  则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
  迭代法
  已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式
  解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))
  得α+β=1
  αβ=-1
  构造方程x²-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2
  所以
  an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1
  an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2
  由式1,式2,可得
  an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3
  an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4
  将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
温馨提示:内容为网友见解,仅供参考
第1个回答  2019-08-09

斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21……
它的通项公式为:(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}【√5表示根号5】

斐波那契数列的通项公式是怎么求出来的?
斐波那契数列:1、1、2、3、5、8、13、21、……如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)显然这是一个线性递推数列。通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为:X^2=X+1...

斐波那契数列公式推导过程
斐波那契数列的通项公式为Fn=a^n+b^n(n≥1),其中a和b满足方程a+b=0,a^2+b^2=1。通过求解这个方程组,我们可以得到a=1\/√5,b=-1\/√5。因此,斐波那契数列的通项公式可以进一步简化为:Fn=(1\/√5)^n-(-1\/√5)^n这就是斐波那契数列的通项公式的推导过程。

求斐波那契数列的通项公式完整步骤
斐波那契数列通项公式推导方法 Fn+1=Fn+Fn-1 两边加kFn Fn+1+kFn=(k+1)Fn+Fn-1 当k!=1时 Fn+1+kFn=(k+1)(Fn+1\/(k+1)Fn-1)令 Yn=Fn+1+kFn 若 当k=1\/k+1,且F1=F2=1时 因为 Fn+1+kFn=1\/k(Fn+kFn-1)=> Yn=1\/kYn-1 所以 Yn为q=1\/k=1(1\/k+1)=k+1的等比...

斐波那契数列通项推导方法
斐波那契数列通项的推导方法可以采用递推法或矩阵法。递推法:1、定义初始条件:F(0)=0,F(1)=1。2、通过迭代计算,求解F(n)= F(n-1)+ F(n-2),直到计算到所需的第n个数。3、得到通项公式F(n)。矩阵法:1、定义初始条件:F(0)=0,F(1)=1。2、构造矩阵A=[1,1;...

斐波那契数列通项公式是什么?
斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21……这个数列从第三项开始,每一项都等于前两项之和 它的通项公式为:[(1+√5)\/2]^n \/√5 - [(1-√5)\/2]^n \/√5 【√5表示根号5】很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。...

斐波那契数列通项公式是怎样推导出来的?
斐波那契数列的通项公式推导过程,以高中生的思维层次为基准,首先简化递推公式,进而求得通项。递推关系式为:F(n) = F(n-1) + F(n-2)令x = F(n), y = F(n-1),则有:x = y + (y - x)x = 2y - x 解得:x = (1 + √5)\/2 * y y = (1 - √5)\/2 * x 若y...

如何计算斐波那契数列的通项公式?
斐波那契数列的通项公式是F(n)=F(n-1)+F(n-2),其中F(1)=1,F(2)=1,F(n)表示第n项。递归公式虽然直观,但在实际计算中效率并不高。如果要计算很大的项,比如F(10000),就需要进行很多次的递归计算,时间成本很高。为了解决这个问题,数学家们找到了其他的求解方法。其中最著名...

有谁知道斐波那挈数列的通项公式啊?
设斐波那契数列的通项为An。(事实上An = (p^n - q^n)\/√5,其中p = (√5 - 1)\/2, q = (√5 + 1)\/2。但这里不必解它)然后记 Sn = A1 + A2 + ... + An 由于 An = Sn - S(n-1) = A(n-1) + A(n-2) = S(n-1) - S(n-2) + S(n-2) - S(n-3)=...

斐波那契数列通项公式是什么?
公式:数列从第三项开始,每一项都等于前两项之和,它的通项公式为:[(1+√5)\/2]^n \/√5 - [(1-√5)\/2]^n \/√5 【√5表示根号5】解得x=(1+sqr(5))\/2 而Fn\/Fn+1=1\/x=(sqr(5)-1)\/2 这里用了极限的方法斐波那契数列的通项公式 Fn=[(1+√5)\/2]^n \/√...

斐波拉契数列的通项是多少?求推导方式!
斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:显然这是一个线性递推数列。通项公式 (如上,又称为“比内公式”,是用无理数表示有理数的一个范例。)注:此时a1=1,a2=1,an=a(n...

相似回答