一元二次方程解法选择

一元二次方程的题目,有什么方法可以快速浏览题目之后想出最快的解法,就是公式法,配方法,因式分解法,直接开平方法4种方法中,有什么技巧可以看题目之后迅速想起用什么解法最方便?谢了

一、两项的:如含有一次项,先提公因式;如含有常数项,用直接开平方法或平方差。二、三项的:(1)能够用因式分解法的尽可能用(相对比较简便),包括用完全平方公式、十字相乘法(不知老师补充没有,很方便的);(2)不能用因式分解法的,如果一次项系数与二次项系数的比值是偶数(如x^2+2x-1=0),可以用配方法;(3)以上两种方法有困难,一般用公式法,也可以不用配方法或尽量少用配方法,直接用公式法。
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-09-04
方程右边是“0”,左边是一个平方差的形式,可以考虑利用因式分解法,得 ,可得 或 ,从而 , .
说明:在解一元二次方程的时候,我们可以方程的特点出发,将方程变形为一边是关于未知数的完全平方式,另一边是一个非负的常数;或者将方程一边变为是“0”,另一边是分解成的两个一次因式的积,运用“降次”的化归思想设法把一元二次方程转化为两个一元一次方程.
第2个回答  2013-09-04
1、直接开平方法:
  直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=±根号下n+m .
  例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
  分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
  (1)解:(3x+1)2=7×
  ∴(3x+1)2=5
  ∴3x+1=±(注意不要丢解)
  ∴x=
  ∴原方程的解为x1=,x2=
  (2)解: 9x2-24x+16=11
  ∴(3x-4)2=11
  ∴3x-4=±
  ∴x=
  ∴原方程的解为x1=,x2=
  2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)
  先将常数c移到方程右边:ax2+bx=-c
  将二次项系数化为1:x2+x=-
  方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2
  方程左边成为一个完全平方式:(x+ )2=
  当b^2-4ac≥0时,x+ =±
  ∴x=(这就是求根公式)
  例2.用配方法解方程 3x^2-4x-2=0 (注:X^2是X的平方)
  解:将常数项移到方程右边 3x^2-4x=2
  将二次项系数化为1:x2-x=
  方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2
  配方:(x-)2=
  直接开平方得:x-=±
  ∴x=
  ∴原方程的解为x1=,x2= .
  3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a) , (b^2-4ac≥0)就可得到方程的根。
  例3.用公式法解方程 2x2-8x=-5
  解:将方程化为一般形式:2x2-8x+5=0
  ∴a=2, b=-8, c=5
  b^2-4ac=(-8)2-4×2×5=64-40=24>0
  ∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)
  ∴原方程的解为x1=,x2= .
  4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
  例4.用因式分解法解下列方程:
  (1) (x+3)(x-6)=-8 (2) 2x2+3x=0
  (3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)
  (1)解:(x+3)(x-6)=-8 化简整理得
  x2-3x-10=0 (方程左边为二次三项式,右边为零)
  (x-5)(x+2)=0 (方程左边分解因式)
  ∴x-5=0或x+2=0 (转化成两个一元一次方程)
  ∴x1=5,x2=-2是原方程的解。
  (2)解:2x2+3x=0
  x(2x+3)=0 (用提公因式法将方程左边分解因式)
  ∴x=0或2x+3=0 (转化成两个一元一次方程)
  ∴x1=0,x2=-是原方程的解。
  注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。(3)解:6x2+5x-50=0
  (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
  ∴2x-5=0或3x+10=0
  ∴x1=, x2=- 是原方程的解。
  (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)
  (x-2)(x-2 )=0
  ∴x1=2 ,x2=2是原方程的解。
  小结:
  一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
  直接开平方法是最基本的方法。
  公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。
  配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法
  解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。

如何解一元二次方程?
一元二次方程的5种解法有:直接开平方法;配方法;公式法;因式分解法;图像解法。1、直接开平方法:依据的是平方根的意义,步骤是:①将方程转化为x=p或(mx+n)=p的形式;②分三种情况降次求解:①当p>0时;②当p=0时;③当p<0时,方程无实数根。需要注意的是:直接开平方法只适用于部分的...

解一元二次方程的方法有哪几种
解一元二次方程的方法有以下解法:1、直接开平方法 如果一元二次方程只有含未知数的二次项和常数项(比如:x²=a,其中a是常数),或者只有含未知数的一次项构成的代数式的完全平方形式和常数项(比如:(x-a)²=b,其中a,b是常数),同学们可以选择直接开平方法解方程,并把常数项移...

一元二次方程的三种解法
一元二次方程的三种解法如下:1、首选因式分解法 因式分解法是解一元二次方程最实用、最快捷的方法,但具体应用起来有一定的局限性。若方程的常数项为0或能直接提公因式或能应用乘法公式来分解因式时,选择因式分解法更为明智。2、特殊形式选择配方法 配方法是一种很重要的数学方法,对于二次项系数和...

一元二次方程的5种解法
1、直接开平方法。对于直接开平方法解一元二次方程时注意一般都有两个解,不要漏解,如果是两个相等的解,也要写成x1=x2=a的形式,其他的都是比较简单。2、配方法。在化成直接开平方法求解的时候需要检验方程右边是否是非负的,如果是则利用直接开平方法求解即可,如果不是,原方程就没有实数解。3...

一元二次方程如何解?
一元二次方程有四种解法:直接开平方法;配方法;公式法;因式分解法。解一元二次方程的基本思想方法为通过“降次”将它化为两个一元一次方程。1、直接开平方法 形如x²=p或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方法解一元二次方程。如果方程化成x²=p的形式,...

如何解一元二次方程?
一元二次方程四中解法。一、公式法。二、配方法。三、直接开平方法。四、因式分解法。公式法1先判断△=b_-4ac,若△<0原方程无实根;2若△=0,原方程有两个相同的解为:X=-b\/(2a);3若△>0,原方程的解为:X=((-b)±√(△))\/(2a)。配方法。先把常数c移到方程右边得:aX_...

一元二次方程解法有哪几种
一元二次方程的解法有开方法、配方法、公式法。1.开方法:将方程化为标准形式x^2=b\/a,当a≠0时,两边开平方的x=±√(b\/a)。开方法适用于方程左侧为完全平方数的情况,但需要注意,当a为负数时,需要将方程转化为x^2=-b\/a的形式,然后求出复数解。2.配方法:先将方程化为一般形式ax^2+...

一元二次方程4种解法
解一元二次方程的常见方法有以下四种:1.因式分解法:通过对方程进行因式分解,将方程转化为两个一次方程的乘积等于0的形式,然后分别解这两个一次方程。例如,对于方程x^2+5x+6=0,可以因式分解为(x+2)(x+3)=0,从而得到x=-2和x=-3两个解。2.完全平方式:对于一元二次方程ax^2+bx+c=0...

一元二次方程怎么解?
一元二次方程一般解法如下:1.配方法 (可解全部一元二次方程)如:解方程 x^2+2x-3=0 解:把常数项移项得:x^2+2x=3 等式两边同时加1(构成完全平方式)得:x^2+2x+1=4 因式分解得:(x+1)^2=4 解得:x1=-3,x2=1 用配方法解一元二次方程小口诀 二次系数化为一 常数要往...

一元二次方程的解法公式法
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:1、直接开平方法。2、配方法。3、公式法。4、因式分解法。相关概念:1、含有未知...

相似回答