傅里叶变换的意义

傅里叶变换的意义和实际应用

傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。

傅里叶级数和傅里叶变换其实就是我们之前讨论的特征值与特征向量的问题。分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。


扩展资料

傅里叶变换的应用:

1、傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子;

2、傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;

3、正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;

4、著名的卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;

5、离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT))。

参考资料来源:百度百科-傅里叶变换

温馨提示:内容为网友见解,仅供参考
第1个回答  2018-01-30

我认为其还有更深层次的意义,主要的论述如下:

    根据现在的弦理论,构成各种粒子的基本单元为高维度下震动的弦;

    震动就得有频率;

    量子力学理论告诉我们能量是不连续的;能量是一份一份的,其大小是由频率决定

    相对论告诉我们,能量与质量是相等;

    宏观时间的光学、声学、运动学,是微观的统计结果

    那么宏观世界的事件发生习惯上以时间顺序进行排序,即对于无规律性的波动而言在时间轴上描述变的十分困难;但是当换种角度看问题,宏观时间的构成是由微观世界的不同的大量的粒子叠加而成,粒子是以不同频率震动的,拿对这些不同的震动进行统计的叠加得到的就是时域与频域的转化关系。

    我想这就是傅里叶变换的自然哲学意义吧

第2个回答  推荐于2018-03-13
您对于傅里叶变换恐怕并不十分理解

傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的

所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度

对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示

已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。

傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。

我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。傅里叶变换值得你用心去理解——哪怕苦苦思索几个月也是值得的——我当初也想过:只要会算题就行。但浙大校训“求是”时时刻刻鞭策着我追求对理论的理解——最终经过很痛苦的一番思索才恍然大悟。建议你看一下我们信号与系统课程的教材:化学工业出版社的《信号与系统》,会有所帮助。本回答被网友采纳
第3个回答  2015-06-26
您对于傅里叶变换恐怕并不十分理解

傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的

所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度

对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示

已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。

傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。

我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。傅里叶变换值得你用心去理解——哪怕苦苦思索几个月也是值得的——我当初也想过:只要会算题就行。但浙大校训“求是”时时刻刻鞭策着我追求对理论的理解——最终经过很痛苦的一番思索才恍然大悟。建议你看一下我们信号与系统课程的教材:化学工业出版社的《信号与系统》,会有所帮助。
第4个回答  2022-04-13

傅氏变换是将时域信号f(t)变换为频域函数F(ω),即换个变量 (时间t换为→ω频率) 看信号变化规律。看出了什么东东?①看出复信号的模函数丨F(ω)丨随ω的分布规律;②看出复信号的幅角函数φ(ω)随ω的变化规律。幅角函数φ(ω)一般在 (-π/2 ~ π/2) 变化,前者对应频率 ω=-∞,后者对应频率 ω=∞。虚数单位( j )固然不可测量,可测量的是模函数丨F(ω)丨及幅角函数 φ(ω)。


傅里叶变换的意义
傅里叶变换的意义:一、傅里叶变换是一种数学工具,它将信号从时间域转换到频率域。它在科学和工程领域中有着广泛的应用,尤其在信号处理、图像分析、通信等领域。通过傅里叶变换,我们可以更深入地理解和分析信号的特性。二、信号分解。 傅里叶变换能够将复杂的信号分解成不同频率的简单信号,这些信号...

傅里叶变化的意义是什么?
傅里叶变换的意义和理解:一、意义:从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅里叶分析是作为热过程...

傅里叶变换的四种意义
1. 傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解,在线性时复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;4. ...

傅里叶变换的作用
1、傅里叶变换是数字信号处理领域一种很重要的算法。要知道傅里叶变换算法的意义,首先要了解傅里叶原理的意义。2、傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正...

傅里叶变换的物理意义是什么为什么需要进行傅里叶变换
傅里叶变换的物理意义,无需多讲,就是把非周期信号,用无限的周期正余弦函数进行叠加,来表示所需要的时域的函数。做傅里叶变换的目的是因为 很多在时域内看不见的特性在频域内能很清楚的得到。比如说,矩形波,在时域内就一直线,当用傅里叶变换后在频域内,我们就能看见像各谐波的频率,相位,振幅...

傅里叶变换的意义
1、傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和\/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。2、傅里叶级数和傅里叶变换其实就是...

傅里叶变换的意义和理解
傅里叶变换的意义和理解介绍如下:目的: 把声音、图像都分解为N多个三角函数的叠加。使用不同的基本函数去分解可以得到不同变换。傅里叶变换只是其中一种,还是有拉普拉斯变换、Z 变换等。意义:傅里叶变换的实质是将一个信号分离为无穷多多正弦\/复指数信号的加成,也就是说,把信号变成正弦信号相加的...

傅里叶变换的物理意义
傅立叶变换的物理意义是将一个在时间域当中的信号所包含的所有频率分量(主要指其各频率分量的幅度和相位)用一个以角频率为自变量的函数表示出来,称其频谱。图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值...

傅里叶变换的意义(理解频域分析的重要性)
傅里叶变换的意义在于,它能够将复杂的信号分解成若干个简单的正弦波或余弦波,从而更好地理解信号的特性和结构。傅里叶变换不仅在信号处理领域有着广泛的应用,还被广泛地应用于图像处理、声音处理、通信系统等领域。傅里叶变换的操作步骤 傅里叶变换的操作步骤可以分为以下几步:1.将时域信号转换为复数...

傅里叶变换的意义
傅里叶变换的意义在于将时域信号转换为频域信号,从而方便进行信号分析和处理。在信号处理领域,傅里叶变换是一种非常重要的工具。通过傅里叶变换,可以将一个信号从时间域转换到频率域,使我们能够更直观地了解信号的频率组成和分布。这对于信号的分析、滤波、降噪、压缩等方面都有着重要的应用。傅里叶...

相似回答