5. y/x = tanv, v = arctan(y/x),
x^2+y^2 = e^(2u), u = (1/2)ln(x^2+y^2)
z = uv = (1/2)ln(x^2+y^2) arctan(y/x)
z'<x> = [x/(x^2+y^2)]arctan(y/x)
- (1/2)[y/(x^2+y^2)]ln(x^2+y^2)
z'<y> = [y/(x^2+y^2)]arctan(y/x)
+ (1/2)[x/(x^2+y^2)]ln(x^2+y^2)
追问天才呀,你怎么做到的