高三数学第二章必修五知识点

如题所述

第1个回答  2023-02-28
【 #高三# 导语】高中学习方法其实很简单,但是这个方法要一直保持下去,才能在最终考试时看到成效,如果对某一科目感兴趣或者有天赋异禀,那么学习成绩会有明显提高,若是学习动力比较足或是受到了一些积极的影响或刺激,分数也会大幅度上涨。 高三频道为你准备了《高三数学第二章必修五知识点》,希望助你一臂之力!

高三数学第二章必修五知识点(一)


  一、函数的定义域的常用求法:

  1、分式的分母不等于零;

  2、偶次方根的被开方数大于等于零;

  3、对数的真数大于零;

  4、指数函数和对数函数的底数大于零且不等于1;

  5、三角函数正切函数y=tanx中x≠kπ+π/2;

  6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

  二、函数的解析式的常用求法:

  1、定义法;

  2、换元法;

  3、待定系数法;

  4、函数方程法;

  5、参数法;

  6、配方法

  三、函数的值域的常用求法:

  1、换元法;

  2、配方法;

  3、判别式法;

  4、几何法;

  5、不等式法;

  6、单调性法;

  7、直接法

  四、函数的最值的常用求法:

  1、配方法;

  2、换元法;

  3、不等式法;

  4、几何法;

  5、单调性法

  五、函数单调性的常用结论:

  1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。

  2、若f(x)为增(减)函数,则-f(x)为减(增)函数。

  3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。

  4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

  5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

  六、函数奇偶性的常用结论:

  1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。

  2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

  3、一个奇函数与一个偶函数的积(商)为奇函数。

  4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

  5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

高三数学第二章必修五知识点(二)


  一个推导

  利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+…+a1qn-1,

  同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

  两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

  两个防范

  (1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.

  (2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.

  三种方法

  等比数列的判断方法有:

  (1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N*),则{an}是等比数列.

  (2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N*),则数列{an}是等比数列.

  (3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N*),则{an}是等比数列.

  注:前两种方法也可用来证明一个数列为等比数列.

高三数学第二章必修五知识点
5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1\/2[f(x)+f(-x)]+1\/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。高三数学第二章必修五知识点(二)一个推导 利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+…+a1qn-1,同乘q得...

高三年级数学必修五知识点
通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。3.高三年级数学必修五知识点 一个推导利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+…+a1qn-1,同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠...

高三数学必修五知识点梳理
3、函数的最值在实际问题中的应用 函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。3.高三数学必修五知识点梳理 映射、函数、反函数...

高三数学必修五知识点归纳
3.高三数学必修五知识点归纳 (一)导数第一定义 设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=...

高三数学必修五知识点总结
1.高三数学必修五知识点总结 斜边是指直角三角形中最长的那条边,也指不是构成直角的那条边。在勾股定理中,斜边称作“弦”。三角形斜边长等于根号下两直角边的平方和,即斜边c=√(a^2+b^2)解答过程如下:(1)在直角三角形中满足勾股定理—在平面上的一个直角三角形中,两个直角边边长的平方...

高中数学必修五知识点总结
⑹等差数列{a }中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.⑺记等差数列{a }的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小.高中数学必修五:等比数列的基本性质 ⑴公比为q的等比数列,...

高三数学必修五上册知识点
2.高三数学必修五上册知识点 定义: 形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域: 当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根...

高中数学学霸提分秘籍:必修五知识点总结
在高中数学的学习过程中,掌握必修五的知识点是提分的关键。首先,要注重基础知识的巩固,同时将高中数学合理分类,按照课本的大章节进行,帮助理解知识脉络。速度、容量和方法并存的学习过程中,基础不扎实的学生可能会感到困惑,不知道如何平衡听讲与记笔记。因此,关键在于记录关键思路和结论,而非面面俱...

初一到高三的数学学习内容列表?
高中:必修一:集合与函数概念,基本初等函数,函数的应用;必修二:空间几何体,点、直线、平面之间的位置关系,直线与方程,圆与方程;必修三:算法初步,统计,概率;必修四:三角函数,平面向量,三角恒等变换;必修五:解三角形,数列,不等式;选修2-1:常用逻辑用语,圆锥曲线与方程,空间向量与立体...

现在重庆高三的学生,文科的!从高一到现在数学都学了些什么内容?详细点...
一、算法初步;二、统计、三、概率 必修四:一、三角函数;二、平面向量;三、三角恒等变换 必修五:一、解三角形;二、数列;三、不等式 选修1-1、1-2、1-3主要:逻辑用语、圆锥曲线与方程、导数及应用;数系、统计案例、推理证明 重点是必修一、必修四、必修五、再就是必修二、必修三 ...

相似回答
大家正在搜