高数简单求极限

怎么做 不会

1^∞型极限,可以先把底数换成e
原式
=lim e^[(π/x)lncos√x]
只需计算指数的极限
lim (π/x)lncos√x
=lim (π/x)ln( 1 + cos√x-1 )
用等价无穷小y~ln(1+y)
=lim (π/x)(cos√x-1)
继续用等价无穷小cosy-1~(-1/2)y^2
=lim(π/x)(-(1/2)x)
=-π/2
所以原式=e^(-π/2)
温馨提示:内容为网友见解,仅供参考
无其他回答

高数的极限怎么求?
高数没有八个重要极限公式,只有两个。1、第一个重要极限的公式:lim sinx \/ x = 1 (x->0)当x→0时,sin \/ x的极限等于1;特别注意的是x→∞时,1 \/ x是无穷小,无穷小的性质得到的极限是0。2、第二个重要极限的公式:lim (1+1\/x) ^x = e(x→∞)当x→∞时,(1+1\/x)^...

高数求极限的方法总结
高数求极限的方法总结如下:1、利用函数的连续性求函数的极限(直接带入即可)如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。2、利用无穷小的性质求函数的极限 性质1:有界函数与无穷小的乘积是无穷小 性质2:常数与无穷小的乘积是无穷小 性质3:有限...

如何求高数的极限?
极限公式:1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1\/2x^2 (x→0)4、1-cos(x^2)~1\/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、arcsinx~x (x→0)8、arctanx~x (x→0)9、1-cosx~1\/2x^2 (x→0)10、a^x-1~xlna (x→0)11...

怎么用高数的方法算极限?
2、高数求极限方法:01 定义法。此法一般用于极限的证明题,计算题很少用到,但仍应熟练掌握,不重视基础知识、基本概念的掌握对整个复习过程都是不利的。02 洛必达法则。此法适用于解“0\/0”型和“8\/8”型等不定式极限,但要注意适用条件(不只是使用洛必达法则要注意这点,数学本身是逻辑性非常...

高数简单求极限
1^∞型极限,可以先把底数换成e 原式 =lim e^[(π\/x)lncos√x]只需计算指数的极限 lim (π\/x)lncos√x =lim (π\/x)ln( 1 + cos√x-1 )用等价无穷小y~ln(1+y)=lim (π\/x)(cos√x-1)继续用等价无穷小cosy-1~(-1\/2)y^2 =lim(π\/x)(-(1\/2)x)=-π\/2 所以原式=...

高数求极限,数学高手帮帮忙,要详细的步骤。。谢谢
解法一:(罗必达法)(1)原式=e^{lim(x->0)[ln(1-x)\/x]} =e^{lim(x->0)[-1\/(1-x)]} (0\/0型极限,应用罗比达法则)=e^(-1)=1\/e;(2)原式=e^{lim(x->0)[ln(1+2x)\/x]} =e^{lim(x->0)[2\/(1+2x)]} (0\/0型极限,应用罗比达法则)=e^2 =e²...

高数函数求极限
1.原式=lim(x→0)(x²-2x+3)\/(2x³+x²+1)=3\/1=3 2.原式=lim(x→0)[(1-3x)^(1\/(-3x))]^[3(x-1)]=e^{lim(x→0)[3(x-1)} =e^(-3)=1\/e³3.原式=lim(x→0){[√(1+sinx)-√(1-sinx)]\/x} =lim(x→0){2(sinx\/x)\/[√(1+...

高数求极限
简单期间(不严格求解):实际上当n趋于无穷大时,3^n与1相比较,其值很大的,所以忽略 括号里面的 1 于是变为 =Lim(3^n)^(1\/n)=3

高数极限怎么求
1.利用函数的连续性求函数的极限(直接带入即可)如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。2.利用无穷小的性质求函数的极限 性质1:有界函数与无穷小的乘积是无穷小 性质2:常数与无穷小的乘积是无穷小 性质3:有限个无穷小相加、相减及相乘仍旧...

高数求极限有什么简便办法?
求极限是高等数学中的基本问题,也是许多复杂问题的出发点。求极限的方法有很多,但是有一些简便的办法可以帮助我们更快更准确地求解。首先,我们需要了解极限的基本概念。极限是指函数在某一点或无穷远处的趋向值。求极限就是要求这个趋向值。在求极限时,我们通常会遇到以下几种情况:1.零比零型:这种...

相似回答
大家正在搜