云计算,大数据,数据挖掘,机器学习,模式识别。这些概念之间的关系是怎么样的?

如题所述

云计算:就是个炒得很热的商业概念,其实说白了就是将计算任务转移到服务器端,用户只需要个显示器就行了,不过服务器的计算资源可以转包。当然,要想大规模商业化,这里还有些问题,特别是隐私保护问题。

大数据:说白了就是数据太多了。如今几兆的数据在20年前也是大数据。但如今所说的大数据特殊在哪呢?如今的问题是数据实在是太多了,这已经超过了传统计算机的处理能力(区别与量子计算机),所以对于大数据我们不得不用一些折衷的办法(比如数据挖掘),就是说没必要所有数据都需要精确管理,实际上有效数据很有限,用数据挖掘的方法把这些有限的知识提取出来就行了。·此外,数据抽样,数据压缩也是解决大数据问题的一些策略。

数据挖掘:从数据中提取潜在知识,这些知识可以描述或者预测数据的特性。有代表性的数据挖掘任务包括关联规则分析、数据分类、数据聚类等,这些你在任一本数据挖掘教材都可以了解。下面我说说和大数据的区别:数据挖掘只是大数据处理的一个方法。马云所说的大数据,或者如今商业领域所说的大数据,实际上指的就是数据挖掘,其实真正所谓大数据,或者Science杂志中提到的大数据,或者奥巴马提出的大数据发展战略,我的理解是,这些都远远大于数据挖掘的范畴,当然数据挖掘是其中很重要的一个方法。真正目的是如何将大数据进行有效管理。

机器学习:这个词很虚,泛指了一大类计算机算法。重点是学习这个词,如果想让计算机有效学习,目前绝大多数方法都采用了迭代的方法。所以在科研界,只要是采用了这种迭代并不断逼近的策略,一般都可以归到机器学习的范畴。此外,所谓学习,肯定要知道学什么,这就是所谓训练集,从训练集数据中计算机要学到其中的某个一般规律,然后用一些别的数据(即测试集)来看看学得好不好,之后才能用于实际应用。所以,选取合适的训练集也是个学问。

模式识别:意思就是模式的识别。模式多种多样,可以是语言,可以是图像,可以是事物一些有意义的模块,这些都算。所以总体来说,模式识别这个词我是觉得有点虚,倒是具体的人脸图像识别、声音识别等,这些倒是挺实在的。也许是我不太了解吧。

另外说说你的其他问题。

传统分析方法不包括数据挖掘。对于数据分析这块我不是很了解,不过可以肯定的是,传统分析都有一定的分析方向,比如我就想知道这两个商品的关联情况,那我查查数据库就行了。数据挖掘虽说有些历史,不过也挺时髦的,它是自动将那些关联程度大的商品告诉你,这期间不需要用户指定数据分析的具体对象。

如果想应对大数据时代,数据挖掘这门课是少不了的。此外对数据库,特别是并行数据库、分布式数据库,最好了解点。至于机器学习和模式识别,这些总的来说和数据挖掘关系不太大,除了一些特殊的领域外。

总之,概念挺热,但大数据还很不成熟,无论从研究上还是商业化上。我目前在作大数据背景下的算法研究,说实话,目前基本没有拓展性非常强的算法,所以未来大数据的发展方向,我也挺迷茫。

PS:将数据挖掘应用于商业,最最重要的就是如何确定挖掘角度,这需要你对具体应用的领域知识非常了解,需要你有非常敏锐的眼光。至于数据挖掘的具体算法,这些就交给我们专门搞研究的吧!(对算法的理解也很重要,这可以把算法拓展到你的应用领域)
温馨提示:内容为网友见解,仅供参考
第1个回答  2019-12-19
云技术 就是一群联网的计算机
大数据 就是数据量大
数据挖掘 就是分析大数据,找到感兴趣的隐含信息
机器学习就是 机器具有自动学习能力 就是计算机也能做一些人干的事,但是要用数据学
模式识别就是 机器可以识别一些东西,像字、图、人脸、指纹啦...
一群联网的计算机通过云计算把要模式识别的数据进行数据挖掘,之后形成模式识别的代码让机器学习....实现某种模式识别任务本回答被网友采纳

云计算,大数据,数据挖掘,机器学习,模式识别。这些概念之间的关系是怎...
模式识别:意思就是模式的识别。模式多种多样,可以是语言,可以是图像,可以是事物一些有意义的模块,这些都算。所以总体来说,模式识别这个词我是觉得有点虚,倒是具体的人脸图像识别、声音识别等,这些倒是挺实在的。也许是我不太了解吧。另外说说你的其他问题。传统分析方法不包括数据挖掘。对于数据分...

模式识别和机器学习,数据挖掘的区别与联系
3.数据挖掘。数据挖掘是一门交叉性很强的学科,可以用到机器学习算法以及传统统计的方法,最终的目的是要从数据中挖掘到为我所用的知识,从而指导人们的活动。所以我认为数据挖掘的重点在于应用,用何种算法并不是很重要,关键是能够满足实际应用背景。而机器学习则偏重于算法本身的设计。4.模式识别。我觉...

数据挖掘与模式识别,两者有何区别和联系?
发现模式或规则:按照不断变换的条件、约束或关系,从数据集中发掘或提炼有意义的模式或规则?基于内容的检索:基于某种相似度或匹配度,在数据集中检索某类感兴趣的模式数据挖掘的一般过程?数据准备:数据的筛选、清洗、转换、整合?数据挖掘:核心步骤,对准备好的数据运行算法进行学习、发现或构造?模式\/...

机器学习和数据挖掘有什么联系?二者有什么区别?
数据挖掘是指从大量数据中挖掘出有价值的潜藏规律和知识。数据挖掘渴望完整而真实的原始数据,去噪和样本平衡很重要。实施过程涉及机器学习、模式识别、统计学、分布式存储、分布式计算、可视化等,还需要掌握领域专业知识。机器学习是从数据中获取经验进而改善系统性能的一类重要方法,“学习”的意义就是求解最...

数据仓库,大数据和云计算有什么区别和联系
数据库和数据仓库的概念,大家google一下就可以了,接下来,我们看看它们之间的关系:1)数据库和数据仓库都是数据的一种存储方式,大数据处理更多的是一种需求(问题),而云计算是一种比较综合的需求(问题)解决方案。2)由于云计算本身的特性,天生就面临大数据处理(存储、计算等)问题,因为云计算的基本...

数据挖掘,机器学习,深度学习这些概念有区别吗
它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。...

人工智能,大数据与深度学习之间的关系和差异
机器学习应用领域:数据挖掘、数据分类、计算机视觉、自然语言处理(NLP)、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用等。深度学习(Deep Learning,DL):是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的...

人工智能模式识别是什么,与数据挖掘有关吗
数据挖掘,这个更偏应用一些了。首先是数据,这个显然要用到数据库的各种技术和理论;然后是挖掘,一般而言也就是用机器学习的方法去做。(这里要说明的是机器学习和模式识别关系很紧密的,二者本来就有很多是共通的,我也不好去下定义;某种意义上来说也都是人工智能的范畴)总结就是,人工智能是一种...

大数据、数据分析和数据挖掘的区别是什么?
数据挖掘概念: 数据挖掘基于数据库理论,机器学习,人工智能,现代统计学的迅速发展的交叉学科,在很多领域中都有应用。涉及到很多的算法,源于机器学习的神经网络,决策树,也有基于统计学习理论的支持向量机,分类回归树,和关联分析的诸多算法。数据挖掘的定义是从海量数据中找到有意义的模式或知识。大数据...

人工智能,机器学习,统计学,数据挖掘之间有什么区别
机器学习是从假设空间H中寻找假设函数g近似目标函数f。数据挖掘是从大量的数据中寻找数据相互之间的特性。数据挖掘是基于数据库系统的数据发现过程,立足与数据分析技术之上,提供给为高端和高级的规律趋势发现以及预测功能;同时数据量将变得更为庞大,依赖于模式识别等计算机前沿的技术;其还有另外一个名称为商业智能(BI, ...

相似回答
大家正在搜