异面直线夹角的求法?直线和平面夹角的求法?二面角的求法?两平面垂直的证法?3点或者4点共面的求证?

详细点.好的加分.谢了.

异面直线夹角的求法:将一条直线投影到另一条直线所在的平面,再求投影后两直线的夹角。
直线和平面夹角求法:将直线投影到平面上,直线和投影线的夹角就是直线和平面的夹角,取锐角
二面角的求法:同时做两平面的垂线,垂线之间的夹角就是二面角的大小,取锐角
两平面垂直的证法:同时做两平面的垂线,垂线相互垂直,则两平面垂直。
3点或者4点共面的求证:三点确定一个平面,只需证明第四点在另外三点确定的平面上就可以了。
温馨提示:内容为网友见解,仅供参考
第1个回答  2008-04-07
主要是把异面直线平移,利用空间线平行或者两条平移到一起,或者一条平移到另一条上.(多用中点做交点) 直线和平面夹角就是直线和他在面内的射影的夹角. 二面角的求法就是从两个面分别做交线的垂线,两个垂线的夹角就是二面角. 两平面垂直的证法是一条直线垂直一个面A着条直线过另一个面B,则着两个面A.B垂直. 3点一定共面 4各点的就是证明3个共面,另一个在这个面内的一条直线上,就OK了. 希望你努力学习. 更上一层楼!
第2个回答  2008-04-07
用向量
异面直线夹角的求法:把直线表示成向量,用夹角公式COS〈a,b>=a与b的数量积除以a的模b的模
直线和平面夹角求法:求出平面的法向量,在求出直线与法向量的夹角,则夹角的余角即为所求
二面角的求法:分别求出两个面法向量,在求法向量的夹角,则所求角为夹角或其补角
点共面的证法:三点确定一个平面,只需证明第四点在另外三点确定的平面上就可以了
第3个回答  2008-04-07
我从来做立体几何题都是用向量的,基本上不会遇到什么困难.但说真的我对常规方法一窍不通~相信我向量可以解决你上述所有疑问!
第4个回答  2008-04-10
也可用余弦定理
不过要放到三角形中

异面直线夹角的求法?直线和平面夹角的求法?二面角的求法?两平面垂直的...
异面直线夹角的求法:将一条直线投影到另一条直线所在的平面,再求投影后两直线的夹角。直线和平面夹角求法:将直线投影到平面上,直线和投影线的夹角就是直线和平面的夹角,取锐角 二面角的求法:同时做两平面的垂线,垂线之间的夹角就是二面角的大小,取锐角 两平面垂直的证法:同时做两平面的垂线,...

怎么求异面直线夹角 线面夹角 面面夹角也就是二面角夹角 求解释越详细...
面面角:平面A和B相交于直线L,那么你可以在平面A和B上作两条直线L1和L2,使得L1垂直于L,L2垂直于L.那么L1和L2的夹角就是面面角.

高中数学中求异面直线夹角的方法与技巧是什么?
1.做异面直线的平行线2.说明哪个角就是所求角3.把角放到平面图形中求解 本回答被网友采纳 皊爱 | 推荐于2017-12-15 11:41:14 举报| 评论 0 1 最稳妥最不用费脑筋的就是用向量法,只要你的向量没有写错,计算过程中不会出错,用两个向量的夹角公式【cos夹角=a向量点乘b向量\/(a向量的模*b向量的模...

高中数学必修2第二章“点、直线、平面之间的位置关系”总结
(3)在空间几何体中,求异面直线所成的角的关键是找平行线;求异面直线间的距离的关键是找公垂线。(4)二面角的求法:①定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;②三垂线法:已知二面角其中一个面内一点到...

求线面夹角、二面角、异面直线夹角、向量夹角、直线的倾斜角、直线夹角...
线面夹角:[0,π\/2],二面角:[0,π]异面直线夹角:(0,π\/2],向量夹角:[0,π]直线的倾斜角:[0,π),直线夹角:(0,π\/2]直线间的到角:(0,π)

(悬赏20分)正棱柱中求两异面直线的夹角怎么求,二面角怎么找?有什么技巧...
空间几何的东西一定要想法给转换到一个平面内搞定。比如异面直线夹角,你可以以其中一条直线L1为基础,找一条和这条直线L1相交的直线L,同时后者平行于另一条直线L2,那么所求的角就是L和L1的夹角。二面角也差不多,根据定义或者其他方式转换到一个平面上,问题就容易了。

立体几何中空间角和距离的求法
异面直线所成角就是两条直线方向向量所成角或补角,θ=arccos|cos| 直线和平面所成角的正弦就是直线的方向向量和平面法向量夹角的馀弦的绝对值,θ=arcsin|cos| 二面角就是两个法向量夹角或补角,θ=arccos或π-arccos 点到平面的距离就是连接该点和平面上一点的向量点乘平面法向量(取绝对值),再除以...

我是读高四的学生,我想尽可能提高我数学和物理的成绩,有经验的给我说...
)、离散型变化率或概率题型(熟练掌握两种主要的分布:几何分布和二项分布及其求法)。立体几何题型(掌握几个证明空间位置的定理,尤其是证明线面垂直或线面平行的定理,掌握异面直线所成角的求法(平移相交)、直线与平面的夹角的求法、二面角的求法(重点:三垂线法要熟练掌握)、以及等体积法的运用...

用向量法求出的异面直线夹角
首先得明确异面直线的夹角的取值范围是【0,π\/2】计算异面直线夹角的大体思路是:建立空间直角坐标系,然后在每条直线上取两个相异点,首尾相连,定位这条直线上的“方向向量”。接着用有序实数对表示出这两个向量,就是(x,y,z)的形式。然后利用向量数量积(点乘)的运算公式,得到cos〈向量a...

高三数学,求救
⑵直线与平面所成的角:①直接法(利用线面角定义);②先求斜线上的点到平面距离h,与斜线段长度作比,得sin 。注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。⑶二面角的求法:①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;②三垂线法:由一个半面内一点作(或找)到另一个半平面...

相似回答