已知等差数列{an}中a2=2,a1+a4=5 (1)求数列{an}的通项公式 (2)若bn=2nan求数列{bn}的前n项和Sn

如题所述

(1)设等差数列{an}的公差为d,则
a2=a1+d=2 (1)
a1+a4=a1+a1+3d=5 (2)
由(1)与(2)解得:a1=1,d=1
∴an=a1+(n-1)d=1+(n-1)=n
即:an=n
(2)∵bn=2nan=2n*n=2n^2
∴Sn=2*(1^2+2^2+...+n^2)=2*n(n+1)(2n+1)/6=n(n+1)(2n+1)/3
(这里用到了公式1^2+2^2+...+n^2=n(n+1)(2n+1)/6,如果第一次见到,请记住它,很有用的!)
温馨提示:内容为网友见解,仅供参考
无其他回答

...1)求数列{an}的通项公式 (2)若bn=2nan求数列{bn}的前n项和Sn_百度...
a2=a1+d=2 (1)a1+a4=a1+a1+3d=5 (2)由(1)与(2)解得:a1=1,d=1 ∴an=a1+(n-1)d=1+(n-1)=n 即:an=n (2)∵bn=2nan=2n*n=2n^2 ∴Sn=2*(1^2+2^2+...+n^2)=2*n(n+1)(2n+1)\/6=n(n+1)(2n+1)\/3 (这里用到了公式1^2+2^2+...+...

...等差数列,其中a2=2,a4=3.(1)求{an}的通项公式;(2)求数列{an2n}的前...
解答:(本小题满分14分)解:(1)设数列{an}的公差为d,则a4-a2=2d,故d=12,从而a1=32.所以{an}的通项公式为an=12n+1.(2)设{an2n}的前n项的和为Sn,由(1)知an2n=n+22n+1,则Sn=322+423+…+n+12n+n+22n+1,12Sn=323+424+…+n+12n+1+n+22n+2,两式相减得...

已知等差数列an中,a2=2,a4=4,求数列an通项公式,设数列bn满足bn=2(a...
a1=a2-d=1 an=a1+(n-1)d=n tn=n(n+1)\/2 bn=2^n=2x2(n-1)Sn=b1(1-q^n)\/(1-q)=2[2^n-1]=2^(n+1)-2

等差数列{an}中,a3=3,a1+a4=5.(1)求数列{an}的通项公式及前...
解答:解:(1)由等差数列的性质可得a1+a4=a2+a3=5,结合a3=3可得a2=2,∴公差为d=3-2=1,故通项公式为an=2+(n-2)×1=n…(6分)(2)由(1)可得bn+1= n n+1 bn,∴ bn bn-1 = n-1 n (n≥2),由累乘法有bn= 1 n b1= 1 n (n≥2)…(10分)又b1= 1 1 符合上式 ...

...中,已知a1=2,a4=16.(1)求数列{an}的通项公式及前n项和Sn。(2)若a3...
(1)设等差数列{an}的公比为q q^3 = a4\/a1 = 8得q = 2,通项公式为an = 2^n,前n项和S=2(2^n -1)\/(2-1)=2^(n+1)-2 (2)a3 = 2^3 = 8 = b16,a5 = 2^5 = 32 = b4 则等差数列{bn}的公差为d = (b16-b4)\/12 = -2 通项公式bn = 40-2n ...

...a2是a1与a4的等比中项.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=a n...
(Ⅰ)∵a2是a1与a4的等比中项,∴a22=a1a4,∵在等差数列{an}中,公差d=2,∴(a1+d)2=a1(a1+3d),即(a1+2)2=a1(a1+3×2),化为2a1=22,解得a1=2.∴an=a1+(n-1)d=2+(n-1)×2=2n.(Ⅱ)∵bn=a n(n+1)2=n(n+1),∴Tn=-b1+b2-b3+b4-…+(-1)nbn...

...中,已知a1=2,a4=16.(1)求数列{an}的通项公式及前n项和Sn。(2)若a3...
n=1时,a1=2^1=2,同样满足。数列{an}的通项公式为an=2^n Sn=2(2^n -1)\/(2-1)=2^(n+1) -2 (2)b16=a3=a1q^2=2×4=8 b4=a5=a3q^2=8×4=32 b16-b4=12d=8-32=-24 d=-2 b1=b4-3d=32-3(-2)=38 bn=b1+(n-1)d=38-2(n-1)=40-2n 数列{bn}的通项...

...a2,a1+a3,a4成等差数列.(Ⅰ)求数列{an}的通项公式an;(Ⅱ)求数列{...
(Ⅰ)解:设等比数列{an}的公比为q,∵a1=2,且a2,a1+a3,a4成等差数列,∴a2+a4=2(a1+a3),∴q(a1+a3)=2(a1+a3),∵a1+a3=a1(1+q2)≠0,∴q=2.∴数列{an}的通项公式是an=2n.(Ⅱ)解:∵log2an-an=n-2n,∴Sn=(1?2)+(2?22)+…+(n?2n)=(1+2+3+…...

等比数列{an}中,a1=2,a3+2是a2,a4的等差中项 1)求数列an的通项公式...
1.an=2q^(n-1)a2=2q a3=2q^2 a4=2q^3 2(2q^2+2)=2q+2q^3=2q(1+q^2)q=2 an=2*q^(n-1)=2^n 2.bn=anlog2an =anlog2 2^n =nan =n2^n

...a4=16.(1)求数列{an}的通项公式;(2)设等差数列{bn}中,b2=a2,b9=a...
(1)设等比数列{an}的公比为q,∵a1=2,a4=16,∴2q3=16,解得q=2.∴an=2×2n?1=2n.(2)设等差数列{bn}的公差为d,∵b2=a2,b9=a5,∴b1+d=22b1+8d=25,解得b1=0d=4.∴bn=0+(n-1)×4=4n-4.(3)∵an?bn=(4n?4)?2n=(n-1)?2n+2.∴Sn=0+24+2...

相似回答
大家正在搜