已知f(x)=sin²x+sinxcosx,x∈[0,π\/2]。(1)求f(x)的最小正周期及值 ...
(1)∵cos2x=cosxcosx-sinxsinx=cos²x-sin²x=(1-sin²x)-sin²x=1-2sin²x ∴sin²x=(1-cos2x)\/2 ∵sin2x=2sinxcosx ∴sinxcosx=(sin2x)\/2 ∴f(x)=(1-cos2x)\/2+(sin2x)\/2 =1\/2+(sin2x)\/2-cos(2x)\/2 =1\/2+√2\/2(√2\/2sin2...
已知f(x)=sin²x+sinxcosx,则f(x)的最小正周期和一个单调增区间分别是...
f(x)=sin²x+sinxcosx=1\/2(1-cos2x)+1\/2sin2x=1\/2+1\/2sin2x-1\/2cos2x)=√2\/2sin(2x-π\/4)最小正周期为T=2π\/2=π 单调区间x满足:-π\/2+2kπ≤2x-π\/4≤π\/2+2kπ,解得-π\/8+kπ≤x≤3π\/8+kπ ...
已知函数f(x)=sin^2x+sinxcosx
解:f(x)=sin²x+sinxcosx =[1-cos(2x)]\/2 +sin(2x)\/2 =sin(2x) \/2 -cos(2x) \/2 +1\/2 =(√2\/2)sin(2x-π\/4)+1\/2 最小正周期T=2π\/2=π 0≤x≤π\/2 -π\/4≤2x-π\/4≤3π\/4 -√2\/2≤sin(2x-π\/4)≤1 sin(2x-π\/4)=1时,f(x)有最大值[...
f(x)=sin^x+sinxcosx+1最小正周期和最小值是
f(x)=sin²x+sinxcosx =[1-cos(2x)]\/2 +sin(2x)\/2 =sin(2x) \/2 -cos(2x) \/2 +1\/2 =(√2\/2)sin(2x-π\/4)+1\/2 最小正周期T=2π\/2=π 0≤x≤π\/2 -π\/4≤2x-π\/4≤3π\/4 -√2\/2≤sin(2x-π\/4)≤1 sin(2x-π\/4)=1时,f(x)有最大值[f(x)]max...
已知函数f(x)=sinx(sinx+根号三cosX),其中x属于【0,π\/2】
f(x)=sin²x+√3sinxcosx =(1\/2)(1-cos2x)+(√3\/2)sin2x =√3\/2)sin2x-(1\/2)cos2x+1\/2 =sin(2x-π\/6)+1\/2 x∈【0,π\/2】所以 2x-π\/6∈[-π\/6,5π\/6]根据函数图象可知 所以f(x)最大值为3\/2 此时x=π\/3 f(x)最小值为0 此时x=0 f(α)=sin...
已知函数y=sin²x+sinxcosx (1)求该函数的最小正周期 (2)当0≤x...
1,y=sin²x+sinxcosx =1\/2(1-cos2x+sin2x)=1\/2(1-√2cos(2x+π\/4))最小正周期T=2π\/2=π 2,0≤x≤π\/2;0≤2x≤π,π\/4≤2x+π\/4≤5π\/4 2x+π\/4=π\/4时cos(2x+π\/4)=√2\/2,y取最小值0,x=0 2x+π\/4=π时cos(2x+π\/4)=-1,y取最大值1\/2(...
已知函数f(x)=—根号3*sinx方+sinxcosx,x∈R 求函数f(x)的最小正周期...
f(x)=-√3*sin²x+sinxcosx =-√3*(1-cos2x)\/2+1\/2sin2x =1\/2sin2x+√3\/2cos2x-√3\/2 = sin(2x+π\/3) -√3\/2 最小正周期是π。x∈[0,π/2]时 2x+π\/3∈[π\/3,4π\/3],sin(2x+π\/3) ∈[-√3\/2,1]所以sin(2x+π\/3) -√3\/2∈[-√3,1-√3\/2]...
已知函数f(x)=cos²x+sinxcosx(x∈R)(1)求f(3π\/8)的值(2)求f(x...
f(x)=cos²x+sinxcosx =(cos2x+1)\/2+sinxcosx =1\/2cos2x+1\/2+1\/2sin2x =√2\/2sin(2x+π\/4)+1\/2 f(3π\/8)=√2\/2*sinπ+1\/2=1\/2 先求增区间 令2kπ-π\/2<=2x+π\/4<=π\/2+2kπ,k∈Z 2kπ-3π\/4<=2x<=π\/4+2kπ,k∈Z kπ-3π\/8<=x<=π\/8+k...
已知f(x)=(sinx+cosx)sinx,x∈[0,∏\/2],求f(x)值域
f(x)=(sinx+cosx)sinx =sin^2x+cosxsinx =-1\/2(1-2sin^2x)+1\/2(2cosxsinx)+1\/2 =-1\/2cos2x+1\/2sin2x+1\/2 =-√2\/2(√2\/2cosx-√2\/2sin2x)+1\/2 =-√2\/2cos(2x+π\/4)+1\/2 因:x∈[0,π\/2]所以可得f(x)的值域为[(-√2+1)\/2,(√2+1)\/2]...
已知函数f=cos平方x+sinxcosx x∈r 求f的值
f(x)=cos²x+sinxcosx =(1+cos2x)\/2+1\/2*sin2x =1\/2(sin2x+cos2x)+1\/2 =√2\/2*sin(2x+π\/4)+1\/2 因为-1≤sin(2x+π\/4)≤1 所以函数值域是[-√2\/2+1\/2,√2\/2+1\/2]